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Chapter 1

Introduction

The underlying theory which addresses the question of what makes up the universe and seeks

to understand the elementary building blocks of matter and how they interact, is firmly estab-

lished. The theory is known as the Standard Model of particle physics “SM”. Currently, the

largest and highest energy machine in the world that is aimed at testing whether the theory is

fully relevant for describing nature, is the CERN’s Large Hadron Collider experiment (LHC).

Many aspects of the SM have been already probed (7 and 8 TeV for Run I, and 13 TeV for Run

II ), and a series of tests have failed to find any significant discrepancy between experiment

and the predictions of this model [1]. With the discovery of the only missing SM particle the

Higgs boson [2],1 announced by ATLAS [3] and CMS [4] in July 2012, the SM explains the

majority of the experimental results with extraordinary precision and has now achieved its full

glory [5, 6].

Although the SM is our current best tested theory of all time, is nevertheless far from being

a closed field and cannot represent a complete description of nature. Many open questions

and unexplained problems are still unanswered by the SM, such as neutrino masses and mixing

[8],2 Baryon asymmetry of the universe [9],3 and perhaps most significantly the absence of an

accurate description of the gravitational force using quantum field theory. Furthermore, the

SM does not provide any clues about the nature of dark matter [10]. In order to explain these

puzzles and finding answers to these questions, some yet unknown particles or interactions would

be needed, that clearly indicate new physics beyond the Standard Model (BSM). Currently,

numerous imaginative theories for new physics have been proposed, notably several Super-

Symmetric (SUSY) models [11] that seemed to provide an elegant solution, but experiments

have yet to provide guidance pointing to the existence of SUSY particles.

1The discovery of the Higgs boson (spin-0 neutral particle with parity of +1 and mass of approximately 125
GeV ) gave a sound justification for the origin of mass for massive gauge bosons as well as fermions.

2Contrary to the results of neutrino oscillation experiments, which imply that the neutrinos have non-
vanishing masses, in the SM, the neutrinos are assumed to be massless [7].

3When the laws of physics appear to be almost symmetric for matter and anti-matter, the universe is
abundant in matter.
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Presently, collisions at the LHC occur at such high energies (13.6 TeV) that even massive

particles such as electroweak bosons (W±, Z0, Higgs boson), the top quark and any new particles

whose masses fall close to the electroweak scale will often exhibit transverse momentum (pt)

far exceeding their rest mass (m). When these particles decay hadronically, the decay products

are more likely to get clustered into a single energetic fat jet [13]. The abundant presence of

highly boosted (pt ≫ m) SM particles may indicate the existence of new physics. For instance,

in specific extensions of the SM, they emerge as decay products of TeV-scale BSM particles.

QCD jets in the background generated from high-energy quarks and gluons, on the other hand,

may acquire a mass through radiation, frequently in the same mass range as the boosted jets.

Identifying the origin of the signal jets and distinguishing them from the overwhelming QCD

background is an important challenge at the LHC.

To overcome these challenges, several techniques relying on jet substructure have been de-

veloped to extract the internal dynamical properties of high pt jets [14,15] in order to determine

whether they are signals or background jets. Over the past few years, a variety of tools have

been introduced, and they can often be grouped into three broad classes: Groomers [16, 17],

Triggers (Prong finders) [18, 20], and Jet shapes observables (radiation constraints) [21–24].

Most recently, another avenue that can be employed to study jet substructure problems, is that

of neural networks and machine learning techniques [25]. The calculation of QCD background

events in the LHC poses a formidable challenge. Future electron-positron colliders such as the

International Linear Collider (ILC) and the Circular Collider in electron mode (FCC-ee), on

the other hand, provide a cleaner experimental environment with lower radiation levels. A key

advantage of these experiments over the LHC is their low background and well-defined initial

states, which should significantly improve precision measurements and offer a convenient en-

vironment for observations of new physics. Establishing a better understanding and achieving

precision calculation of QCD event and jet shapes observables created in e+e− collisions, which

will potentially be allowing for an efficient background subtraction, is rather the aim of this

thesis.

Infrared and collinear (IRC) safe measures of the geometrical characteristics of the en-

ergy/momentum flow in a hadronic final state are provided by event-shape variables [26–29].

In order to better understand the dynamics of quark and gluon scattering, it became mandatory

to go beyond event shapes, and define the final state in terms of clusters of jets (jet shapes)

rather than individual hadrons. For this to be possible, only recently many jet definitions have

been developed [32, 33]. In this thesis we study two observables: single-hemisphere mass dis-

tribution, which is an event shape observable, and azimuthal decorrelation between jets which

is a typical jet shape observable whereby final states are clustered using several infrared and

collinear (IRC) safe jet algorithms. More details on IRC safe jet algorithms will be discussed

in Chapter 3.
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In order to interpret the experimental results, one must first establish as thorough under-

standing of the underlying theory as possible. Establishing a connection between the theoretical

predictions and experimental data is the goal of particle physics phenomenology.4 To make this

connection, theoretical tools to study shape distributions may be divided into two comple-

mentary broad classes. The first is the numerical simulations that employ Monte-Carlo (MC)

event generators to model most of the physics that happens in particle collisions. The gen-

eration of the hard process takes place using perturbation theory (PT). Additional partonic

activity is generated, including initial state radiation (ISR) and final state radiation (FSR).5

Non-perturbative physics (the underlying event (UE), pile-up (PU), and hadronisation) are

also handled. Herwig [34,35], Pythia [36,37], and Sherpa [38] are currently amongst the widely

used MC event generators. However these different event generators use various models for

both perturbative and non-perturbative effects. Consequently, very different predictions were

pointed out between them and the intrinsic theoretical uncertainty is large making the level of

precision they provide may be regarded a problem that has yet to be solved. Furthermore, the

typical accuracy of event generators is usually leading logarithm (LL). As one of the perturba-

tive issues that MC generators handel, is that of the resummation of large logarithms present

in the distributions of most observables, which are mainly caused by the miscancellation of

infrared and/or collinear singularities at the matrix-element level. For more accurate predic-

tions and to check the validity of the MC tools, in this thesis we rather focus on the second

theoretical approach, i.e., analytical calculations, both at fixed-order and all-orders (resumma-

tion) of event and jet shape distributions, based on the traditional perturbative QCD (pQCD)

approach. The latter said procedure investigates factorizations and exponentiation properties

of QCD matrix elements. Comparisons of the analytical findings to the output of MC programs

are provided as well. Another avenue that can be performed in terms of analytical tools is an

effective field theory for soft and collinear parton emissions, a so-called Soft Collinear Effective

Theory (SCET) [39, 40], but it is beyond the scope of this thesis.

For global observables of sufficiently inclusive shape which are sensitive to radiation every

where in phase space, the resummation of the said large logarithms is relatively simple and

has even been successfully done analytically to NNNLL accuracy [44]. NLL accuracy in a

large number of QCD observables that are referred to as non-global, i.e., those sensitive to

emissions in restricted regions of the angular phase space, has proven difficult to reach due to

their cumbersome resummation. Emissions outside the “forbidden” region which themselves

subsequently emit a single gluon back into the “measured” region lead to a tower of large

single logarithms αn
sL

n [52,94]. The treatment of these non-global logarithms (NGLs) relies on

multiple gluon branchings that increasingly become complicated at higher orders in PT. Their

4This implies that one collects information from experimental studies, creates new models or hypotheses,
and creates techniques to calculate quantities that can be compared to current or forthcoming data.

5More on ISR, FSR, UE, PU, and MPI will be in chapter 3.
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resummation, contrary to that of global observables mentioned above, cannot be performed by

a consideration of a fixed number of gluon emissions since an iterative pattern could not thus

far be spotted.

NGLs were first spotted and numerically resummed in the large-Nc limit (Nc is the number

of quark colors) by Dasgupta and Salam in Refs. [52, 94]. Banfi, Marchesini and Smye derived

a non-linear integro-differential equation, the BMS equation [95], whose solution resums NGLs

at large Nc for emissions off a given dipole. A numerical solution of this equation was provided

in the same reference for away-from-jets energy flow. An analytic solution to the BMS equation

was also achieved by means of a perturbative expansion in the strong coupling up to fifth order

by Schwartz and Zhu in Ref. [96]. An analogous integro-differential equation was also proposed

by Weigert [97] that resums NGLs to all orders at finite Nc, and was solved numerically in

Ref. [98] in the context of away-from-jets energy flow, and in Ref. [99] for the hemisphere mass

distribution in e+e− → qq̄ events. Additionally, in Refs. [100, 101] an evolution algorithm that

deals with NGLs at finite Nc to all orders was developed. Ref. [102], evaluated NGLs at finite

Nc up to fifth order in the coupling by computing Eikonal amplitudes of soft gluon emissions

(as in Ref. [93]) and using phase space considerations. NGLs have also been considered in the

context of groomed multi-prong jet shape observables in Ref. [103].

Another point that we would like to address concerning the significant impact that one

inevitably faces when applying jet algorithms other than the anti-kt algorithm [121] (such

as the kt [120], Cambridge-Aachen C/A [48] as well as the SISCone algorithm [19]) to non-

global observables, is twofold. Firstly, the said observables receive a tower of extra large single

logarithms in the independent emission terms relative to global observables. We refer to these

large logarithms as “ clustering logarithms” (CLs). They were first pointed out in [49] for energy

flow into gaps-between-jets distribution. At NLL accuracy, the said extra single logarithms have

a non-trivial impact on the global part (primary emissions) which deviates from naive single

gluon exponentiation, that was first pointed out in [49, 50]. Secondly, a significant reduction

in the NGLs contribution was observed in the same observable (energy flow into gaps between

jets distribution) [50, 51] due to the soft clustering inherent in such algorithms. The all-orders

resummation can currently only be obtained via the MC program of [52]. Despite the fact

that analytical resummation of CLs has proven to be highly intricate, it has, however, been

shown for both gaps-between jets [50] and jet mass [53] in e+e− annihilation, through explicit

fixed-order calculations of the first few orders up to O(α4
s) in the perturbative expansion that

CLs exhibit a pattern of exponentiation. We carry out analogous calculations for the dijet

azimuthal deccorolation in Chapter. 4.

This thesis is organized as follows. In Chapter 2 we begin by outlining some of the princi-

ples of pQCD, emphasizing on features that will be relevant to this thesis, such as Infrared and

Collinear (IRC) safety which is mandatory for the perturbative calculation of the observables
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under consideration. In chapter 3 we provide a brief overview of QCD phenomenology and jets.

Furthermore, to define jets using different jet algorithms, the class of sequential-recombination

jet algorithms is reviewed in this chapter. Chapter 4 is concerned with the study of the non-

global jet shape distribution, the azimuthal decorrelation between jets in e+e− annihilation, and

its resummed calculation which includes both non-global and clustering logarithms which are

of fundamental importance for this work. In chapter 5 which is similar in content to Ref. [54],

we approximate the analytical solution to the BMS equation by proposing an exponential of a

series in the coupling αs, and we perform analytical calculations for the non-global logarithms

up to fourth order in the exponent for the specific hemisphere mass distribution in e+e− colli-

sions. Finally, we conclude in chapter 6 and summarise the finding of our work in this thesis.

Additionally, we also discuss prospects for future works on the topic.



Chapter 2

SM review and QCD generalities

The Standard Model (SM) of particle physics has viewed the universe as having a limited

number of foundational constituents, known as elementary particles. With higher energies the

structure of matter can be probed and what has been thought to be the most basic elementary

objects has changed over time. In the 19th century, atoms were considered as elementary

particles but they are today considered to be composed of nuclei surrounded by electrons.1

While the electron is still thought to be one of the elementary particles of nature, the nucleus

appears to consist of nucleons (protons and neutrons) that have since been discovered to be

build out of more fundamental objects, the quarks and gluons.

Charge Gen I Gen II Gen III

2
3

u c t
up charm top

−1
3

d s b
down strange bottom

Table 2.1: The six quarks of the Standard Model.

There are six different quarks in nature with fractional electric charges, which are divided

into three generations (see Table 2.1), and can exist in three different color states, say, red,

green and blue. Till this time, the other particles, the electron and its heavier versions, i.e.,

the muon and tau as well as their corresponding neutrinos that are thought to be elementary,

are all members of another group of six particles with integer charges known as leptons, see

Table 2.2. The “matter” particles consist therefore of three generations of leptons and quarks.

They all come with spin half 1/2, and hence called fermions, and by charge conjugation, one

can associate an anti-fermion to each fermion.

The SM of particle physics is a quantum field theory (QFT) that describes three of the four

fundamental forces of nature affecting the fermionic quark and lepton (matter) fields, known

to us: the electromagnetic, weak and strong forces. Unlike quantum electrodynamics (QED) in

1For more detailed narrative of the history of particle physics, see [55]
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Charge Gen I Gen II Gen III

-1
e− µ− τ−

electron muon tau

0
νe νµ ντ

electron neutrino muon neutrino tau neutrino

Table 2.2: The six leptons of the Standard Model.

which the behaviour of the force has been well understood from its classical theory of Maxwell

and Lorentz,2 the form of the interaction for both weak and strong forces were not available.

The dynamics (the behaviour of the force) of QED is hardly constrained by renormalizibility

and a symmetry principal called local gauge invariance. In regards to the former, QED is a

renormalizible QFT in the sense that ultraviolet (UV) divergences are absorbed into a redefini-

tion of the Lagrangian parameters (mass and coupling constant) that become measurable scale

dependent and are taken from experiment. The latter indicates that the electromagnetic force

arises as a result of the QED Lagrangian’s invariance under local phase transformations of the

unitary group U(1). Consequently, gauge invariance restricts the terms of the Lagrangian and

establishes the types of interactions that can exist. The quanta of the gauge field come with

integer spin and hence belong to bosons and are referred to as gauge bosons. The electromag-

netic interactions between charged particles are indeed mediated by the exchange of a force

carrying particle, called the photon (γ). By analogy to QED, the theories of weak and strong

interactions were also established using the local gauge invariance, and hence are all examples

of gauge theories.

The weak interaction of quarks and leptons which all have the weak isospin charge, is based

on the local special unitary SU(2) symmetry group (called weak isospin), and mediated by three

gauge bosons (Z0,W+,W−) that also carry the weak isospin charge and thus interact with each

others as well. Glashow, Salam and Weinberg were the first who unified electromagnetic and

weak interactions, constituting the electroweak (EW) theory described by the spontaneously

broken gauge symmetry SU(2)× U(1) [59]. The spin-1 three gauge bosons together with the

photon γ are the force carriers of the EW interaction. The dynamics of the strong interaction

between quarks, binding them into hadrons, is described by the theory of Quantum Chro-

modynamics (QCD), in which the underlying symmetry group is the exact non-Abelian color

gauge group SU(3) acting on the color degree of freedom. The quantization of QCD had been

achieved by Faddeev and Popov [60] and its renormalizibility had been proved by ’t Hooft and

Veltman [61]. QCD is the subject of this thesis and any further discussion beyond its scope

will be ignored. The invariance of the QCD Lagrangian under local phase transformations of

SU(3)c results in the formation of eight massless gauge boson fields referred to as gluons which

2QED is the quantum field theory that describes the electromagnetic force holding together atoms and
affecting everything that carry electric charge or magnetic moments.
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are quite similar to photons and effect anything that has color charge. While the gauge field

in QED (γ) is electrically neutral, in QCD the gluons carry color charge, which means they

interact not only with quarks and anti-quarks, but also amongst themselves.

In this chapter we will present a short description of the particular features of QCD which

will play an important role in the development of subsequent chapters. In order to do this, we

start with the SU(3) color gauge symmetry underlying the structure of QCD. Subsequently,

we will briefly describe the corresponding QCD Lagrangian, then explore the Feynman rules

that can be derived from it, and finally apply these rules to compute scattering amplitudes

and cross sections. In subsect. 2.1.3, a special attention will be given to renormalization issues

that leads to the running of the strong coupling constant and that gives rise to the concepts of

asymptotic freedom and confinement. Further discussion on the latter will be given in subsect.

2.1.4. Finally, we consider the properties of the scattering amplitude in the soft and collinear

limits in subsect. 2.1.5.

2.1 Quantum chromodynamics

In this section we briefly introduce the theory of strong interactions, QCD, providing only

some general concepts needed in later chapters of this thesis. For more details, the following

textbooks [62–69] are recommended.

2.1.1 SU(Nc) and color algebra

It is worthwhile to begin by briefly recalling some basic characteristics of the gauge group

SU(Nc), on which QCD is based. For more details one can see [74, 75]. The special unitary

(UU† = 1) Lie group SU(Nc) consists of a set of Nc × Nc complex matrices with determinant

one. The SU(Nc) transformations are just rotations in the color space through an angle θ and

has the general form

U = ei θ
a Ta

, a = 1, ...,Nc
2 − 1 . (2.1)

The color matrices T a
ij ≡ taij which have dimension Nc × Nc are the Nc

2 − 1 generators of the

rotation in the fundamental (F) representation (R) of SU(Nc). These generators are hermitian

and traceless, close under commutation relations and satisfy a Lie algebra such that

[
ta, tb

]
= i fabc tc, (2.2)

and the Jacobi identity

[
ta,
[
tb, tc

]]
+
[
tb, [tc, ta]

]
+
[
tc,
[
ta, tb

]]
= 0 , (2.3)
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which leads to

f bcdfade + fabdf cde + f cadf bde = 0 . (2.4)

The set of real fabc is known as the structure constants of the algebra, which are completely

antisymmetric when their indices are interchanged, fabc = −f bac, fabc = −facb. They are given

by

fabc = −2i
( [
ta, tb

]
tc
)
. (2.5)

The non-Abelian nature of the group emerges clearly in the presence of non-zero fabcs. The

structure constants themselves also satisfy the same algebra given in Eq. (2.2), and hence being

the generators of SU(Nc) in the adjoint (A) representation whose dimension is (Nc
2−1)×(Nc

2−
1)

(T a)bc ≡ −i fabc , (2.6)
[
T a, T b

]
= i fabc T c . (2.7)

For both representations, the generators are usually normalized so that

Tr(ta tb) = TF δ
ab , TF =

1

2
, (2.8)

Tr(T a T b) = TA δ
ab , TA = Nc , (2.9)

where TR denotes the Dynkin index for the representation R. Let us now take the product of

two generators

(taij)
2 =

Nc
2−1∑

a=1

Nc∑

k=1

taik t
a
kj = CF . 1 δij , (2.10)

(T a
bc)

2 =
Nc

2−1∑

a=1

Nc
2−1∑

d=1

T a
bd T

a
dc = CA . 1 δbc . (2.11)

Such a product is called the quadratic Casimir operator (or color charge) CR, which commutes

with all the generators of the representation, and because of its invariance under SU(Nc) trans-

formations, is therefore proportional to the identity matrix. In Eq. (2.8), if we put a = b and

sum over a, we get

Tr(ta ta) =
1

2
(Nc

2 − 1) . (2.12)

On the other hand

Tr(ta ta) = CFTr(1) = CF dim(F) = CF Nc , (2.13)

and hence

CF =
Nc

2 − 1

2Nc
. (2.14)
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CF is the color charge associated with a quark splitting into a quark and a gluon. In a similar

fashion, the calculation of the Casimir operator in the adjoint representation CA which is the

color charge associated with a gluon splitting into gluons, gives CA = Nc. The anti-commutation

relations of the generators are given by

{
ta, tb

}
=
δab

Nc

.1+ dabc tc . (2.15)

Unlike fabc, dabc are totally symmetric under the interchange of any of their indices, and are

given by

dabc = 2Tr
( {
ta, tb

}
tc
)
. (2.16)

2.1.2 The QCD Lagrangian and Feynman rules

The QCD Lagrangian density is given by [62]

LQCD = Lclassical + Lgauge−fixing + Lghost. (2.17)

The classical QCD Lagrangian density is the Dirac Lagrangian density coupled to the Yang-

Milles Lagrangian density

Lclassical =
∑

f

qkf
(
i /D −mf δkl

)
kl
qlf − 1

4
F a
µν F

µν
a , (2.18)

where the sum is over all quark flavors. We identify the Dirac fields qf as being quark fields

of flavor f and mass mf , and their conjugates qf = q† γ0. The quark fields transform in the

fundamental representation of SU(Nc) which is a three dimensional color space. The number

of colors is therefore Nc = 3, with k, l running from 1 to Nc, or k, l = {red, green, blue}, hence

the quark field is represented by a triplet ql =
(
qr, qg, qb

)
, with ql being Dirac spinor fields.3

/D = γµDµ where γµ are the traceless Dirac matrices satisfying the Clifford algebra

{γµ, γν} = 2 gµν ,

with gµν = {1,−1,−1,−1} is the Minkowski metric tensor [76]. The covariant derivative for

QCD which encoded the interaction between quarks and gluons is given by

Dµ = ∂µδij − i gs

8∑

a=1

Aa
µ t

a
ij , (2.19)

3We have suppressed spinor indices. The sum over repeated indices is assumed.
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where the index a spans the gluon’s eight color degrees of freedom, ta are the generators of

SU(Nc) in the fundamental representation (Nc×Nc matrices). The strong coupling gs =
√
4παs

determines the strength of the strong interaction between colored particles. The second term of

the classical Lagrangian contains the dynamics of the gluon gauge fields Aa
µ. The field strength

tensor F a
µν is given by

F a
µν = ∂µA

a
ν − ∂ν A

a
µ − gs f

abcAb
µA

c
ν , (2.20)

where fabc = i T a
bc are the generators of SU(3)c in the adjoint representation. Unlike the Abelian

gauge bosons of QED, in QCD the gluons undergo self-interactions. The non-Abelian last term

in Eq. (2.20) is the most important difference between QED and QCD, when expanded, it

involves terms describing the three and four gluon self-interactions. The property of asymptotic

freedom is ultimately caused by these new terms.

In constructing our field theory, QCD, the local invariance of the classical Lagrangian under

SU(3)c transformations, is required. These transformations result in quark fields being trans-

formed in the fundamental representation, while gluon fields being transformed in the adjoint

representation of SU(3)c so that

qi(x) → q′(x) ≡ qj(x) = exp
(
i θa(x) taij

)
qi(x),

Aµ(x) → A′
µ(x) = exp (i θa(x) T a)

[
Aµ(x) +

i

gs
∂µ

]
exp

(
−i θb(x) T b

)
, (2.21)

where Aµ =
∑8

a=1 A
a
µ T

a , and so

T a F a
µν → T a F ′a

µν = exp (i θa(x) T a) ta F a
µν exp

(
−i θb(x) T b

)
.

Because of the self interaction term, F a
µν is no longer invariant under gauge transformations,

however, F a
µνF

µν
a is invariant. On the other hand, the local symmetry requirement forbids the

corresponding mass term for the gauge field, so they are massless.

The classical Lagrangian contains parts which represent free quarks and free gluons and

also contains parts representing the interactions between them, and hence can be written as

Lclassical = L0 + Lint . (2.22)

Because of the interaction term Lint, exact solutions become no longer possible. In fact the only

other standard procedure for calculating experimentally measurable quantities like decay rates

and interaction cross sections, is by resorting to perturbation theory. Assuming the interaction

term to be sufficiently small, it can be considered as a small perturbation of the free theory

described by L0. The basic quantity to consider is the amplitude (the invariant matrix elements)

Mif of the interacting theory which is then squared and summed (averaged) over final (initial)
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state spin, polarisation and color, to give the required probability P for the occurrence of the

interaction, i.e., transformation between initial and final states

P = |Mif |2 . (2.23)

For reactions involving two incoming beams of particles A and B, e.g., at LEP or LHC, the

total cross section for the reaction A+ B → f is given by

σtot =

∫
F |Mif |2 dΠf

=

∫
1

2EA2EB|vA − vB|
|Mif |2 (2π)4 δ(4)

(
PA + PB −

∑

f

Pf

)
∏

f

d3Pf

(2π)3 2Ef

1

n!
, (2.24)

with F being the flux of the initial particles, dΠf is the final state phase space, E and v stand

for energy and speed of particles and n is the number of identical particles in the final state.

One can expand the amplitude M in a power series of the strength coupling gs (gs ≪ 1)

M =M (0) + gsM(1) + g2s M(2) + g3s M(3) + ... (2.25)

It turns out that the calculation of σtot at each order in the strength coupling gs, might be

feasible using Feynman diagrams and assigning them factors for each vertex (describing the

local interaction of quantized fields), propagator (corresponding to virtual intermediate states)

and external legs (describing the incoming and outgoing real particles), and hence interactions

are depicted in terms of diagrams. These Feynman rules can be derived from the classical

Lagrangian. Lint generates the vertices while L0 produces the propagators. For example, the

quark propagator can therefore be obtained using L0, by simply replacing ∂µ → − i P µ and

taking the inverse of the term between the quark field and its conjugate. On the other hand, the

gluon propagator is constructed from the inverse of the bilinear term Aa
µA

b
ν which is however

not invertible and hence it is not possible to construct the gluon propagator. The interpretation

is that our definition of the gauge field Aa
µ is not unique, due to the fact of the freedom to make

gauge transformations. This problem can therefore be controlled by introducing the gauge-

fixing term Lgauge−fixing [69], and there exist several classes of gauge fixing to this problem. In

practice, the commonly useful one which respects Lorentz invariance is the covariant gauge

parameterized by ξ

Lgauge−fixing = − 1

2ξ

(
∂µAa

µ

)2
. (2.26)

The physical predictions are actually invariant under the choice of ξ. Some widespread choices

include: the Landau gauge (ξ → 0) and the Feynman gauge ξ → 1. We work within this

latter that greatly simplifies our calculations. A spin-1 massless gluon should only have two

physical degrees of freedom (the transverse gluon polarizations). However when using the
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Figure 2.1: Feynman rules for QCD in a covariant gauge, solid lines represent quarks, curly
lines represent gluons, and dashed lines represent ghosts.

covariant gauge, the unphysical time-like and longitudinal polirazations of the gluons could

also propagate within loops. To eliminate the unphysical degrees of freedom, the fourth term

in Eq. (2.17) must be added to the covariant gauge fixing term,4 the kinetic term for the

unphysical ghosts

Lghost = ∂µ η
a†Dµ

ab η
b , (2.27)

where the ηa are anti-commuting scalar fields known as Fadeev-Popov ghosts [77]. Convention-

ally, quarks are represented by solid lines, gluons by curly lines, and ghosts are represented by

dotted lines. The Feynman diagrams along with Feynman rules for QCD are depicted in Fig.

2.1.
4The ghost Lagrangian term depends on the gauge-fixing term chosen where there are gauges whereby the

ghosts are not needed. For example, the axial gauge does not require ghost accounting.
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2.1.3 Renormalization and ultraviolet divergences

It is often straightforward to apply Feynman rules to compute scattering amplitudes for a given

process at leading order (LO) in the strong coupling. However, LO results are generally not

precise enough to much the current experimental precision and therefore to obtain an accurate

theoretical predictions of an observable in QCD, one must calculate its higher orders pertur-

bative corrections. In fact, when advancing beyond LO to next to leading order (NLO) and

beyond, there will be Feynman diagrams involving loops. Fig. 2.2 depicted one such diagram.

However, the loop diagrams produce ultraviolet (UV) divergent integrals over arbitrary large

momentum (k → ∞) which present a problem in perturbation approach.

The Lagrangian is actually expressed in terms of unmeasurable bare parameters such as

the strong coupling constant g0s and the fermion masses m0. It is well established that the UV

divergences may be absorbed into redefinitions of these bare parameters that will become scale

dependent. Consequently, the Lagrangian will be expressed in terms of physically measurable

quantities, rendering the theory under consideration UV finite. This procedure is known as

renormalization and the measurable parameters are typically taken to be renormalized.

In order to accomplish this the divergent integrals must first be regularized and there exist

several approaches to this problem. In practice, the commonly useful method which respects

Lorentz invariance and unitarity as well as maintains the gauge symmetry of the theory is

called dimensional regularization [78–80]. This technique will change the number of space-time

dimensions to d = 4− 2ǫ instead of d = 4 dimensions, where ǫ is a small parameter. The loop

integrals in this dimension are convergent. When taking the limit ǫ → 0, the result will then

include a term proportional to 1/ǫ, which is obviously a singularity.

For the purpose of removing these kind of divergences, the basic idea of renormalization

should be applied. This is achieved by introducing infinite renormalization factors Zi to absorb

the UV divergences. The renormalization then amounts to the replacement

g0s = Zg(µ)gs(µ) , (2.28)

m0 = Zm(µ)m(µ) , (2.29)

χ0 = Zχ(µ)χ(µ), χ ≡ A,ψ , (2.30)

where the superscript (0) stands for bare fields and parameters. The Zi are given by

Zi = 1− δi .

The δi are the counterterms that precisely cancel the UV divergent terms to all orders. This

procedure introduces a scale dependence, the renormalization scale (µ). In addition to the poles

in the Zi, the freedom in absorbing a finite part is determined by the scheme of renormalization
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Figure 2.2: A typical Feynman diagram showing the next-to-leading order virtual corrections
to the process e−e+ → qq̄.

and there are different schemes of renormalisation within the dimensional regularisation scheme.

It is often convenient to use the modified minimal substraction (MS) scheme [81] which removes

the UV poles plus a fixed finite contribution, ln 4π − γE, where γE = 0.5772 is the numerical

value for the Euler constant.

2.1.4 Running of the strong coupling constant

As a consequence of renormalization, the strong coupling constant becomes scale dependent

αs(µ) ≡ g2s(µ)/4π and this is in turn the reason for the paradoxial term “the running of strong

coupling constant”, which is not really a constant. Let us now see how pQCD describes the

energy scale dependence of the strong coupling. Since the perturbative calculation of any

physical observable should be renormalization scheme and scale independent, hence the varia-

tion of the renormalized running coupling is governed by the renormalization group equation

(RGE) [62, 85], which can be written as

µ2∂αs

∂µ2
= β(αs) , (2.31)

and therefore the running of the coupling is determined by the β(αs) function which has the

perturbative expansion

β(αs) = −α2
s (β0 + β1αs + ...) , (2.32)

where the βi coefficients are contributions extracted from different higher loop orders. Some of

the Feynman diagrams giving the one loop contribution β0 are shown in Fig. 2.3. β0 and β1

are given by

β0 =
(11CA − 2nf)

12π
, (2.33a)

β1 =

(
17CA

2 − 5CA nf − 3CF nf

)

24π2
, (2.33b)
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where nf = 5 is the number of active quark flavours. As long as nf < 17, then the coefficient β0

is always positive, and so far max (nf )=6 in nature, hence this result is always satisfied. Eq.

(2.31) can be re-expressed as

∫ αs(Q2)

αs(µ2)

dαs

β(αs)
=

∫ αs(Q2)

αs(µ2)

dµ2

µ2
= ln

Q2

µ2
. (2.34)

Neglecting β1 and higher coefficients of the β(αs) function to only include the one loop β0

contribution, then its solution is given by

αs(Q
2) =

αs(µ
2)

1 + β0αs(µ2) ln(Q2/µ2)
, (2.35)

which means that once the strong coupling αs(µ) is determined at a given scale µ that should

be in the perturbative domain, then its value at any other large scale Q2 can be achieved using

the above equation. 5 In QED with Abelian (non-interacting) photons, only the electron loop

contributed to the 1-loop order giving an overall positive β, and consequently at high energies

the QED coupling increases (α ∼ 1/128). At low energies it gets small (α ∼ 1/137). However

in QCD, besides the quark loop which gives a negative contribution to the expression of β0 (Eq.

(2.33a)), there are other contributions coming from the non-abelian self interactions amongst

gluons (see Fig. 2.3) which provide a positive term proportional to CA, leading to a positive β0

and an overall negative β function. Hence, the self-interaction of the gluons is precisely what

leads to asymptotic freedom. Because of this sign, in the high energy limit (µ2 → ∞), the

strength of the strong coupling decreases to approach zero. In fact collisions between hadrons

at very high energy (short distance) are dominated by the interactions among essentially free

quarks and gluons where pQCD can be correctly applied. On the contrary, when the energy

gets smaller (long distance), if we ignore this fact and compute the perturbative solution of the

RGE equation even at low energies, we will find that there exists a scale at which the running

coupling barge into a singularity when µ2 → ΛQCD. This is called the Landau pole. In fact Eq.

(2.35) can be re-expressed in terms of ΛQCD as

αs(Q
2) =

1

β0(µ2) ln(Q2/Λ2
QCD)

. (2.36)

This scale characterizes the region in which the running coupling increases and hence pQCD is

no longer usable. Using MS scheme and nf = 5, it was found that ΛQCD is typically of the order

of ∼ 200 Mev which is the order of magnitude of the mass of the lightest hadrons [71]. In this

non-perturbative region the running coupling grows and the color interactions become stronger

confining quarks and gluons inside hadrons, which in turn provide the reason why partons

(quarks and gluons) have never been seen in isolation as free particles. This phenomenon is

5Usually the magnitude of αs in QCD is given at the mass of the Z boson: αs(µ = mZ) ∼ 0.118 [70].
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Figure 2.3: The Feynman diagrams giving the one loop β0 contribution to the β function; the
first is the quark loop and the next two are the gluon loops.

Figure 2.4: A schematic picture showing the leading order Feynman diagram for the process
e+e− → qq̄.

known as color confinement which is in fact beyond the scope of pQCD. Furthermore, in such

region, one will be interested in the calculation of non-perturbative inputs like PDFs (see next

chapter).

2.1.5 e+e− annihilation and infrared divergences

In the previous section, we have discussed the UV divergences associated with the high momen-

tum limit and hence short distance physics. We will now assume that UV renormalization has

been carried out and as a starting point we will discuss the infrared and collinear (IRC) singu-

larities which are the topic of this thesis. Despite the fact that the structure of IRC singularities

in QCD is universal, we will look at how they appear in the perturbative QCD calculations for

the process e+e− annihilation into hadrons that can proceed through an intermediate photon

or a Z boson. The perturbative expansion of this process can be written as

σtot(e
+e− → hadrons) = σ0 + σ1 + σ2 + σ3 + .... (2.37)

The basic Feynman diagram representing the born (σ0) cross section is depicted in Fig. 2.4.

Using Feynman rules shown in Fig. 2.1, the born matrix element (amplitude) M0 is given by

iM0 = ū(p1, s1, i) (i e eqf γ
µ) v(p2, s2, j)

(−i gµν)
q2

v̄(q1, S1) (−i e γν) u(q2, S2)

= (−e2 eqf )
i

q2
[
ū(p1, s1, i) γµ v(p2, s2, j)

] [
v̄(q1, S1) γ

µ u(q2, S2)
]
, (2.38)
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where u and v are the Dirac spinors. The final state quark and anti-quark have momenta p1

and p2 and spins s1 and s2 whilst the incoming electron and positron have momenta q1 and q2

and spins S1 and S2, with i, j being the colour indices of the quark and anti-quark, and eqf is

the quark electric charge. For simplicity, we choose to work in the center of mass frame and it

is useful to take the squared center of mass energy s < M2
Z , so that only photon exchange is

important. Defining

q = (
√
s, 0, 0, 0) , (2.39)

s = (q1 + q2)
2 = (p1 + p2)

2 . (2.40)

The squared amplitude (averaged and summed over initial and final state quantum numbers)

reads

|M0|2 =
1

s2
Jµ
(e) J

(q)
µ , (2.41)

where the initial spin averaged electron tensor is given by

Jµ
(e) =

e2

4

∑

S,S′

[
v̄(q1, S1) γ

µ u(q2, S2)
][
ū(q2, S

′
2) γ

ν v(q1, S
′
1)
]

=
e2

4
Tr
(
/q1γ

µ
/q2 γ

ν
)

= e2 (qµ1 q
ν
2 + qν1 q

µ
2 − gµν q1.q2) , (2.42)

and the hadronic tensor is given by

J (q)
µ =

∑

i,j,k,l

∑

s,s′

e2 e2qf
[
ū(p1, s1, i) γµ v(p2, s2, j)

]
[v̄(p2, s

′
2, k) γν u(p1, s

′
1, l)
]

=

nf∑

f=1

e2 e2qf δjkδil (p1µ p2ν + p1ν p2µ − gµν p1.p2)

= Nc

nf∑

f=1

e2 e2qf (p1µ p2ν + p1ν p2µ − gµν p1.p2) . (2.43)

The spin sums are easily performed using the spinors completeness relations

∑

s,s′

u(p)ū(p) = /p ,
∑

s,s′

v(p)v̄(p) = /p . (2.44)

To carry out the Dirac traces we have used some useful trace technology relations which

follow from the fundamental commutation relations of the Dirac matrices. We note that
∑

i,j,k,l δjk δil =
∑

i,j δijδji = Nc. Substituting Eqs. (2.42) and (2.43) into Eq. (2.41), the
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Figure 2.5: Real soft gluon emission and virtual gluon exchange contributing to the cross section
e−e+ → qq̄g at next-to-leading order. B0 stands for the leptonic part of the process.

born crosse section reads

σ0 =
1

2s

∫
d3 ~p1
(2π)3

1

2E1

d3 ~p2
(2π)3

1

2E2

(2π)4 δ4 (q1 + q2 − p1 − p2) |M0|2

= Nc
4π α2

3s

nf∑

f=1

e2qf , (2.45)

where α = e2/4π is the fine structure constant (the QED coupling constant).

As a next step, let us examine the first-order soft corrections to the born (hard) cross-

section, namely the corrections of order αs. At next to leading order (NLO), the Feynman

diagrams representing the real emission of a soft gluon off either of the external hard partons

legs (tree level diagrams) and virtual corrections to the interaction vertex, are depicted in Fig.

2.5. Gluons emitted from final state particles are known as final state radiation (FSR). Let

us first compute the contribution from the real diagrams. Implementing Feynman rules, the

amplitude for real emission corresponding to the sum of the two diagrams a and b is given by

iM1 = ū(p1, s1, i)
[
(−igstaij) γµ ǫa∗µ (k, λ)

i( /p1 + /k)

(p1 + k)2
B0

+B0

i( /p2 + /k)

(p2 + k)2
(igst

a
ij) γ

µ ǫa∗µ (k, λ)
]
v(p2, s2, j) , (2.46)

where B0 stands for the leptonic part of the process, and ǫa∗µ (k, λ) is the gluon polarization

vector which has momentum k, with indices a and λ denoting the gluon color and polarization;

gs is the strong coupling. The quark, antiquark and gluon are all on mass shell, in the sense

that p21 = p22 = k2 = 0. Taking the Eikonal approximation in which the gluon momentum is

small with respect to that of the hard quark and anti-quark, i.e., |k| ≪ |p1−p2| (or equivalently

k → 0 and p1 ∼ p2) and hence allows us to neglect /k in the numerator of the quark and anti-

quark propagators. The corresponding eikonal Feynman rules are shown in Fig. 2.6, and the

color matrices in the fundamental and adjoint representations are represented by

• +ta if the radiating parton is an outgoing quark (incoming antiquark).

• −ta if the radiating parton is an incoming quark (outgoing antiquark).



2.1 Quantum chromodynamics 29

Figure 2.6: Eikonal Feynman rules for QCD.

• +(−)ifabc if the radiating parton is an outgoing (incoming) gluon.

We use the equations of motion for massless (anti) spinor ū(p1) /p1 = 0 and /p2 v(p2) = 0, and

the Dirac algebra

ū(p1) γ
µ
/p1 = ū(p1)γ

µ γν = 2ū(p1) p
µ
1 ,

/p2 γ
µ v(p2) = p2ν γ

ν γµ v(p2) = 2v(p2) p
µ
2 . (2.47)

The amplitude should thus be simplified to

iM1 = gst
a
ij ǫ

a∗
µ (k, λ)

[
ū(p1, s1, i)B0v(p2, s2, j)

] [ pµ1
p1.k

− pµ2
p2.k

]

= gst
a
ij ǫ

a∗
µ (k, λ) (iM0)

[
pµ1
p1.k

− pµ2
p2.k

]
. (2.48)

Multiplying by the conjugate transpose, summing over final state spins, polarization and colors

and averaging over initial state spins, the amplitude squared is therefore given by

|M1|2 = g2s Tr(t
a
ij t

b
kl) δjk δil δab

|M0|2
Nc

2 p1.p2
(p1.k)(p2.k)

= g2s Tr(t
a
ij t

a
ji)

|M0|2
Nc

2 p1.p2
(p1.k)(p2.k)

= g2s CF |M0|2
2 p1.p2

(p1.k)(p2.k)
, (2.49)

where the sum over gluon polarizations is given by
∑

λ,λ′ ǫa∗µ (k, λ) ǫbν(k, λ
′) = −gµν δab, and

the Tr(taij t
a
ji) = CF Nc. In the Eikonal approximation (soft limit) we note that the amplitude

factorizes out into a product of a hard Born amplitude and an Eikonal factor involving all the
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IRC singularities (see below). Consequently the real cross section for the process e−e+ → qq̄g

is given by

σreal
1 = 2CF g

2
s σ0

∫
d3k

(2π)3 2Eg

(p1.p2)

(p1.k) (p2.k)
(2.50)

= CF
αs

π
σ0

∫
dEg

Eg

dφ

(2π)
d cos θ wk

12 , (2.51)

where αs = g2s/4π, and Eg is the gluon energy. Here θ and φ are the polar and azimuthal angles

of the emitted gluon. The antenna function, which corresponds to a soft gluon k stretching

between the two Eikonal (color-connected) legs 1 and 2, is defined as follows

wk
12 = E2

g

(p1.p2)

(p1.k) (p2.k)
. (2.52)

In the center of mass frame, The four-momenta of the outgoing quark, anti-quark and gluon

are given by

p1 =

√
s

2
(1, 0, 0, 1) ,

p2 =

√
s

2
(1, 0, 0,−1) ,

k = Eg (1, sin θ cosφ, sin θ sinφ, cos θ) . (2.53)

Evaluating the 4-momenta products and substituting the result into Eq. (2.51) we get

σreal
1 = CF

αs

π
σ0

∫
dEg

Eg

d cos θ
2

(1− cos θ)(1 + cos θ)
. (2.54)

We clearly note that the cross section may be infinite (divergent) either as (Eg → 0) which

is known as soft or infrared singularity, or as (θ → 0, π) implying that the 4-momentum of

the gluon is parallel to that of either the quark or the ant-quark; this is referred to as a

collinear divergence. Unlike UV divergences, IRC divergences are concerned with long distance

behaviour (like hadronisation). The key point is that from an experimental viewpoint the soft

and collinear gluons could not be distinguished from the process without gluon emission. This in

turn would therefore be reflected in the corresponding theoretical calculation. The condition of

the cancellation of these divergences is given by the Bloch-Nordsieck (BN) [82] and Kinoshita-

Lee-Nauenberg (KLN) [83, 84] theorems which state that in a theory with massless fields,

transition rates are free of IRC singularities that should actually cancel out when contributions

from both virtual and real emission diagrams are added, living a finite result. The virtual cross

section turns out to include exactly the same soft and collinear divergences and we can see

this explicitly at order αs in Appendix A. To perform the phase space integral for both real

and virtual contributions in a well defined manner, we need first to introduce a regulator, and
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use dimensional regularization. The singularities then appear as poles in the regulator ǫ when

taking the limit ǫ→ 0. Each of these singularities gives rise to a single pole 1/ǫ. Whenever the

gluon becomes both collinear and soft a double pole arises, 1/ǫ2.



Chapter 3

Phenomenology of QCD and jets

As we are entering the era of hadron and lepton colliders, an emergent structure consisting of

collimated bunches of hadrons, referred to as jets, is typically the most frequent object observed.

They can be viewed as proxies for hard quarks or gluons produced during the collision. Their

evolution is completely controlled by the strong force, which is described by QCD in the SM.

Jets not only exhibit the QCD behaviour across a wide range of energy scales, but also serve as

signatures of new physics when constructed from the decays of heavy BSM particles. However,

jets are not basically well-defined objects, and in order to accomplish this, one needs to establish

a strictly defined procedure that allows the reconstruction of jets from the set of hadrons in

the final state and we do so in Sec. 3.2.

Unlike electrons which are still considered to be elementary particles, protons are made

up of partons (quarks and gluons), which severely complicates the observed final state and

limits our understanding of the underlying processes. For instance, which parton participates

in the collision or which fraction of each proton’s energy is carried by the colliding partons is

formerly unknown. In this step, the relative probability to find the scattering partons is given

by the parton distribution functions (PDFs), which depend on the factorisation scale µf and

the parton’s momentum fraction x.1 More on this will be discussed in Sec. 3.1. A typical jet

event at the LHC consisting of several parts, in which a 2 hard partons scattering carrying

fraction momenta x1 and x2 of the incoming protons has occurred, is illustrated in Fig. 3.1.

Since the incoming partons’ energy scale greatly differs from the hard scattering scale, gluon

radiation will fill up the phase space, allowing hard partons to radiate gluons before entering the

era of the hard process, a so-called initial state radiation (ISR). The hard scattering of colored

partons which occurs at a much short timescale (1/Q), produces a few hard partons or other

BSM particles. These new partons then shower soft and collinear/wide-angle QCD radiation

at ever lower energies and this phenomena is referred to as final state radiation (FSR), which

results in large logarithmic contributions to the final cross section. The resummation of these

1The variable x represents the momentum fraction of the struck parton relative to the proton, known as
Bjorken-x.

32



33

Figure 3.1: A theoretical representation of a typical jet event at the LHC involves perturba-
tive and non-perturbative effects. Former effects include: hard scattering subprocess, soft and
collinear radiation (resummation), soft and wide-angle radiation, non-global logs (NGLs), ef-
fects of jet algorithms with jet radius R and recombination scheme E. Latter effects include:
underlying event (UE), pile up interactions, and hadronization. This figure is taken from
Ref [12].

large logarithms which is the key issue of this thesis, will be investigated in Sec. 3.3.

The resulting event may be viewed as a central hard partonic scattering surrounded by the

so-called underlying event (UE). The UE receives contributions not only from the breakup of

the proton, (beam-beam remnants (BBR)),2 but also from multiple parton interactions (MPI),

which originate from semi-hard parton-parton scattering inside the same proton-proton colli-

sion. Furthermore, several proton-proton collisions, known as pile-up (PU), may take place

almost simultaneously within the experimental interaction region due to the intense environ-

ment that the LHC’s high liminosity creates. Finally, at the lowest scale (ΛQCD), the dynamical

hadronisation process which actually happens at a much longer timescale (1/ΛQCD), turns par-

tonic degrees of freedom (the colored partons resulting from the showering as well as those

coming from softer interactions, both from UE and PU) to hadronic degrees of freedom (color

singlet hadrons) that we actually observe in the detector.3 This final step of the jet components

interacting in the detector is represented in Fig. 3.4

In e+e− collisions, both incoming particles are elementary, without substructure, and thus

colliding particles and collision energy can be precisely defined. Furthermore, the complications

in analyzing LHC events due to ISR, UE, MPI and PU are essentially removed. With these

advantages, both linear (ILC) and circular (FCC-ee) e+e− future colliders offer an excellent

potential for precision physics as well as discovering and studying new physics signals as they

hit their designed energy (1-3 TeV) .

2BBR are what are left after a parton is removed from each of the first two beam hadrons.
3The hadronisation process has not been fully understood and remains the holy grail of QCD.
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Figure 3.2: Measurements of F2(x,Q
2) at HERA. Results from both the H1 and ZEUS ex-

periments are shown. Bjorken scaling is confirmed in deep inelastic scattering data where for
0.01 < x < 0.5, only a weak Q2 dependence of F ep

2 (x,Q2) is observed. Scaling violations are
evident at both very low and very high x values. For instance, the proton structure function
is noted to decrease (increase) with increasing Q2 at high (low) x values. [Particle Data Group
(Beringer et al.) 2012].

3.1 Scaling violations and factorization

We will now embody the effect of gluon radiation by partons. In the naive parton model [57,58],

it was supposed that parton’s transverse momentum is constrained to be very small in com-

parison to the longitudinal one, and hence one could neglect it. For instance, in deep inelastic

scattering (DIS), the parton that is struck by the photon can however acquire large transverse

momentum via the emission of gluons prior to the hard interaction (ISR). The real emitted

partons will either tend to be collinear to the original incoming parton or soft, resulting in

soft and collinear divergences. In the same way as final state soft and collinear divergences

present in e+e− annihilation that are indeed all cancelled upon adding real and virtual con-

tributions, initial state soft divergences do cancel out. Consequently the final expression’s left

over divergences are initial state collinear divergences.

Here we will just review some results, but for a complete review see for example [62]. The

naive parton model predicts at the lowest order that PDFs which describes the distribution and
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dynamics of partons in the colliding hadrons, depend only on the Bjorken-x

F2(x,Q
2) =

∑

q,q̄

e2q x q0(x) ,

thus confirming Bjorken scaling, F2(x,Q
2) → F2(x). 4 But when taking gluon radiation into

account, i.e., when O(αs) QCD corrections are added, the F2 structure function is found to be

F2(x,Q
2) = x

∑

q,q̄

e2q

[
q0(x) +

αs

2π

∫ 1

x

dξ

ξ
q0(ξ)

{
Pqq

(
x

ξ

)
ln

(
Q2

m2

)
+ C

(
x

ξ

)}]
, (3.1)

where C is a finite function, Q is the hard scale of the process, and (x/ξ) is the momentum

fraction of the incoming parton relative to the proton. We now note that beyond leading order,

the structure function is Q2 dependent and the Bjorken scaling is then broken by logarithms

of Q2. The logarithmic scale violations that were beyond the scope of the parton model (see

Fig. 3.2), were therefore found to be in excellent agreement with the QCD predictions, firmly

establishing the QCD as the correct theory of the strong interactions. In the above equation

Pqq is the Altareli-Parisi splitting function which represents the probability that the daughter

quark keep a fraction z of the parent quark momentum q → qg (see Fig. 3.3). The leading

order P 0
qq(z) is defined by

P 0
qq(z) = CF

[
(1 + z2)

(1− z)+
+

3

2
δ (1− z)

]
. (3.2)

For any smooth function f(z) the plus prescription is defined so that

∫ 1

0

dz
f(z)

[1− z]+
≡
∫ 1

0

dz
f(z)− f(1)

1− z
, (3.3)

to exclude the soft divergences at z = 1 due to the full cancellation of soft-real divergences with

the corresponding virtual ones. On the other hand, the logarithmic term involves collinear

singularities as m2 → 0. These singularities which are a sign of non-perturbative effects, are

removed by renormalization of the non-perturbative PDFs, the so-called collinear factorization

procedure. In clear similarity with ultraviolet renormalization, factorization theorem introduces

a new factorization scale (µf) that can be considered as the scale which separates the short

and long distance physics. Roughly speaking, a parton with high transverse momentum larger

than (µf) participate in the hard scattering partonic cross section σ̂ (see Eq. (3.8)), which is

infrared safe and calculable in PT. While a parton with transverse momentum less than (µf) is

4F1(x,Q
2) and F2(x,Q

2) are structure functions which define the structure of the proton as viewed by the
virtual photon in DIS. Bjorken had estimated that in the limit of Q2 → ∞, at fixed x, the structure functions
depend only on x. This means that no matter how hard it is struck, the proton structure appears the same to
any electromagnetic probe [56].
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Figure 3.3: A diagrammatic representation of the leading order QCD splitting functions.

then absorbed into the non-perturbative PDFs. The renormalized quark distribution function

is

q(x, µ2) = q0(x) +
αs

2π

∫ 1

x

dξ

ξ
q0(ξ)

{
Pqq

(
x

ξ

)
ln

(
µ2
f

m2

)
+ Cq

(
x

ξ

)}
. (3.4)

We can regard q0(x) as an unmeasurable bare distribution. We have used

ln(Q2/m2) = ln(Q2/µ2
f) + ln(µ2

f/m
2) . (3.5)

Note that the singular term ln(µ2
f/m

2) as well as the non-singular term C (x/z) are absorbed

into q(x, µ2
f).

5 Then we have

F2(x,Q
2) ≡

∑

q,q̄

e2q x q(x,Q
2)

=
∑

q,q̄

e2q x

∫ 1

x

dξ

ξ
q(ξ, µ2

f)

{
δ (1− ξ) +

αs(µ
2
f)

2π
P

(
x

ξ

)
ln

(
Q2

µ2
f

)}
. (3.6)

Now the integral in Eq. (3.6) is finite. Furthermore, we have to introduce the gluon

contribution where gluons can split into quarks g → qq̄ (see Fig. 3.3). In a similar fashion to

the analysis made above, the calculation of the gluon contribution may be computed, leading

to an extra term in the quark distribution

q(x, µ2
f) = q0(x) +

αs

2π

∫ 1

x

dξ

ξ
q0(ξ)

{
Pqq

(
x

ξ

)
ln

(
µ2
f

m2

)
+ Cq

(
x

ξ

)}
+

+
αs

2π

∫ 1

x

dξ

ξ
g0(ξ)

{
Pqg

(
x

ξ

)
ln

(
µ2
f

m2

)
+ Cg

(
x

ξ

)}
. (3.7)

Even though the calculation of PDFs which involve small distance effects where the strong

coupling is large, is indeed beyond the scope of pQCD, their Q2 evolution is calculable. They

should therefore be extracted from experimental measurements of the structure functions in

DIS, F2(x,Q
2) =

∑
q,q̄ e

2
q x q(x,Q

2). PDFs are universal (process independent) in the sense that

once they are computed in a given process, they could be used in any other hard reaction. In

practice, DIS experiments are commonly intended to measure the distribution functions (PDFs),

5The exact definition of the parton density and the non-singular piece depends on the renormalization and
factorization schemes. For example, in the DIS scheme the C(z) contribution is absorbed into the renormalized
parton density and we have F2(x,Q

2) =
∑

q,q̄ e
2

q x q(x,Q
2).
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which are then performed to calculate cross sections for hadron-hadron collision experiments.

A typical factorised physical cross section for a process initiated by two protons with momenta

P1 and P2 takes the form [72,73]

σ(P1, P2) =
∑

ij

∫
dx1 dx2 qi(x1, µf) qj(x2, µf) σ̂(p1, p2, αs(µf), Q/µf) +O(1/Qp) , (3.8)

where pi = xi Pi is the momentum of parton i participating in the hard scattering, as schemat-

ically depicted in Fig. 3.1. The last term means that factorization is not an exact result, but it

often stands up to corrections that behave as inverse powers of the hard scale Q, with p being

a real number.

The µ2
f independence of any physical quantity implies that F2(x,Q

2) should satisfy the

following renormalization group equation

dF2(x,Q
2)

d lnµ2
f

= 0 , (3.9)

allowing us to extract an evolution equation for the quark and gluon distributions, called the

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation [90–92]

dq(x,Q2)

d lnµ2
f

=
αs(µ

2
f)

2π

∫ 1

x

dξ

ξ

[
q(ξ, µ2

f)Pqq

(
x

ξ

)
+ g(ξ, µ2

f)Pqg

(
x

ξ

)]
,

dg(x,Q2)

d lnµ2
f

=
αs(µ

2
f)

2π

∫ 1

x

dξ

ξ

[∑

qq̄

q(ξ, µ2
f)Pgq

(
x

ξ

)
+ g(ξ, µ2

f)Pgg

(
x

ξ

)]
. (3.10)

The splitting function Pij has an expansion in the running coupling of the form

Pij(z, αs) = P 0
ij(z) +

αs

2π
P 1
ij(z) + ... . (3.11)

Examples of Feynman diagrams for the leading order (LO) splitting functions are shown in Fig.

3.3 and the LO splitting functions are given by

P 0
qq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ (1− z)

]
,

P 0
qg(z) = TR

[
z2 +

(
1− z2

)]
, TR =

1

2
,

P 0
gq(z) = CF

[
1 + (1− z)2

z

]
,

P 0
gg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z (1− z)

]
+ δ (1− z)

(11CA − 4nf TR)

6
, (3.12)

where CA = Nc, and nf is the number of quark flavours. This equation can be solved nu-

merically. Once the x dependence of the PDFs is known as an input at some low scale µ2
0
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Figure 3.4: This diagram represents the steps involved in producing and measuring a jet. This
figure is taken from Ref [130].

bellow which perturbation theory can not be applied, i.e., derived from experimental data and

fitted to a simple functional form, then the x dependence at any other higher Q2 values can

be calculated using the DGLAP equation. The distribution functions’ characteristic decrease

at large x and increase at small x depicted in Fig. 3.2, are indeed quite well described by this

equation.

3.2 Jet definitions and algorithms

As a first step towards understanding the long-distance hadrons detected in calorimeter cells

in terms of short-distance physics, partons (see Fig. 3.4) and/or decaying massive particles

(boosted), an accurate definition of the jet is necessary. To actually reconstruct a jet, various

“jet definitions” have been introduced in the literature [45, 46]. A typical jet definition is

composed of two essential elements: a jet algorithm which can be seen as a set of mathematical

rules to combine objects which are, in some way close to one another, into jets. Moreover, a

jet definition employs a recombination scheme which describes the way kinematic properties

of the resulting jet are determined from its constituents. Many recombination schemes have

been used, such as the winner-take-all (WTA), the massless pt or Et schemes. The widely

used one, the E-scheme which works by adding the components of the four-vectors, will be

performed in this work. The IRC safety and other characteristics that should be fulfilled in jet

algorithms, were set out by the “Snowmass accord” [47]. Jet algorithms are broadly classified

into two types: cone algorithms and sequential-recombination algorithms. Unlike sequential-
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Figure 3.5: Figures (a), (b) illustrate collinear safe jet algorithms and figures (c), (d) illustrate
collinear unsafe jet algorithms.

recombination algorithms which are all IRC safe, most of the cone algorithms which, are beyond

the scope of this work, are not.

3.2.1 IRC safety of jet algorithms

In order to be able to compute jet cross sections and properties using pQCD, the definition of jets

should be IRC safe. This property implicitly means that if the final state particles are modified

by a soft emission or collinear splitting, the set of hard jets should remain unchanged. Once

this property is fulfilled, in fixed-orer pQCD calculations, IRC singularities should cancel out

when contributions from both virtual and real emission diagrams are added. Additionally, when

the hard scale Q increases, some inverse power of Q suppresses non-perturbative phenomena,

such as those caused by hadronization, which can be made small by sufficiently increasing

Q. However, IRC unsafe jet algorithms, may change the number of final jets, and thus a jet

definition will produce infinite results at some point in the perturbative expansion because of the

lack of cancellation of infrared divergences. For instance, tree-level splittings may produce one

set of jets, while loop diagrams may produce another, breaking the cancellation and leading to

infinite cross-sections as illustrated in Fig. 3.5. Furthermore, a perturbative unsafe jet definition

does not exhibit the power suppression of non-perturbative phenomena. Consequently, only

perturbative safe definitions will be performed in this thesis

3.2.2 Sequential recombination algorithms

Sequential recombination algorithms (SR) typically determine the closest pair of particles based

on some distance metric and merging them together to form new pseudo particles. The algo-

rithm define two distance metrics, the former determines when particles are combined and the

latter decides when jets are constructed. This continues iteratively until the well separated

pseudo particles, which are the output jets, are formed. There is no unique SR algorithm

and various definitions of closeness in phase-space define different algorithms with different

strengths and weaknesses.
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Generalised kt algorithm for pp collisions

Currently, the following algorithm is the most frequently used in studies including jets at the

LHC [120]. In order to examine its role in clustering jets, let us first provide a remainder that

explains how it works:

1. Set the particles in the event as our starting list of objects.

2. For each pair of objects (i, j), one computes the inter-particle distances (the first distance

metric) in the rapidity-azimuth plane, defined by

dij = min
(
k2pti , k

2p
tj

) ∆2
ij

R2
, (3.13)

where p is a free parameter that parameterises the type of the algorithm, kti is the

transverse momentum of particle i, R is the jet-radius and ∆2
ij is given by

∆2
ij =

[
(ηi − ηj)

2 + (φi − φj)
2] .

The distance to the beam (the second distance metric) is defined by

di = k2pti . (3.14)

3. Then iteratively search for the minimum dmin of all distances dij and di.

(a) If dmin = dij, then particle i is clustered into its nearest neighbour j, producing a

single protojet using a recombination scheme, and add (remove) the protojet (objects

i and j) to (from) the current list of objects.

(b) If dmin = di, particle i is classified as a jet and excluded from the further clustering.

Return back to step 2 until the final state is entirely composed of jets.

According to the value of p, SR algorithms may be divided into three broad classes:

• kt algorithm [120]: corresponds to p = 1 in Eq. (3.13). It clusters soft and collinear par-

ticles first, and consequently tends to construct jets more sensitive to extra soft radiation

in the event, such as the UE or PU.

• Cambridge/Aachen (C/A) algorithm [48]: corresponds to p = 0 in Eq. (3.13). It is

energy-independent and clusters particles based only on their angular separation. Thus

it is less sensitive to soft radiation than kt algorithm.

• Anti-kt algorithm [121]: corresponds to p = −1 in Eq. (3.13). It combines the hardest

particles first, giving circular hard jets unsensitive to soft radiation, making it an appealing
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alternative to certain cone-type algorithms. As a result, the anti-kt algorithm is the widely

used one at the LHC.

It is worth mentioning that to leading order, perturbative computations of jet shapes distri-

butions such as the azimuthal deccorelation between jets are identical between all three SR

algorithms.

Generalised kt algorithm for e
+
e
− collisions

In this work we adopt the generalised kt or anti-kt algorithms, suited for e+e− annihilation,

where the algorithms works with the distances

dij = min
(
E2p

i , E
2p
j

)
(
1− cos θij

)
(
1− cosR

) , (3.15)

dij = E2p
i , (3.16)

where Ei is the energy of the ith emission, and θij is the angle between ki and kj such that

cos θij = cos θi cos θj + sin θi sin θj cos(φi − φj).

3.3 Jet shape distributions

Event shapes, like sphericity and thrust [30,31] provide quantitative statements about data. For

instance, the value of the transverse sphericity gives an idea on whether an event is pencil-like,

planar, spherical, or anything in between, where each of these topologies yields a different value

for the event shape.6 Jet shapes, formed by taking a weighted sum over the four-momenta,

transverse momenta, energies, etc of all particles comprising the jet, are event-shape-like ob-

servables defined using clusters of jets instead of individual hadrons. They confine soft-gluon

radiation within jets, where QCD jets exhibit different radiation patterns from those of highly-

boosted heavy particle decay products. They are anticipated to be larger for QCD jets than

for an electro-weak boson jet decays. Likewise, gluon-initiated jets that are characterised by

high radiation activity (due to the large color charge of gluons), are expected to radiate more

soft gluons than quark-initiated jets.

Now we consider the dijet azimuthal deccorelation as an example of a jet shape distribution,

which will be discussed with more detail in the next chapter. We study the integrated azimuthal

deccorelation distribution (cross section) normalised to the born crosse section (σ0) given by

the general expression

Σ(∆) =
1

σ0

∫ ∆

0

dσ

d∆′ d∆
′ . (3.17)

6Sphere-like events are often connected to multi-jet structures, while pencil-like events are typically connected
to events with two collimated back-to-back jets (di-jet structure).
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The perturbative expansion of the shape distribution (3.17) in terms of the coupling αs may

be cast in the form

Σ(∆) = 1 + Σ1(∆) + Σ2(∆) + Σ3(∆) + ... (3.18)

3.3.1 The one-loop calculation

We start by considering the contribution of a real soft emission k to the shape distribution

(3.17). The integral to be considered related to the probability for the azimuthal deccorelation

to be less than a given value ∆, is then

Σr
1(∆) =

∫
dΦ1 |M1|2Θ

(
∆− 2kt√

s

)
Θout(k) , (3.19)

where the superscript r denotes the real emission case and dΦ1 is the one gluon phase space.

The constraint Θout(k) = Θ (cosR− |c|) ensures that gluon 1 is emitted outside both jets.

To find the total correction we now have to consider virtual emissions whose matrix element

has exactly the same form as that in the real emission case with an overall minus sign, as

discussed in Appendix A, but no constraint is present. Thus putting together real and virtual

contributions, the first order correction reads

Σ1(∆) =

∫
dΦ1 |M1|2Θ

[
(∆− 2kt√

s
)− 1

]
Θout(k) . (3.20)

The −1 term stands for the virtual correction that completely cancel the real emissions which

contribute only in the region (∆ > 2kt/
√
s), while the total correction is fully determined by

the virtual contributions with (2kt/
√
s > ∆) which are not vetoed

Σ1(∆) = −
∫

dΦ1 |M1|2Θ
(
2kt√
s
−∆

)
Θout(k) . (3.21)

Notice that the detailed evaluation of the phase space integrals both at one and two-loops will

be postponed to Chapter 4.

3.3.2 Non-global logarithms

Having established that the observable at hand is non-global i.e., sensitive to emissions in a

limited region of the phase-space (outside both jets). Consequently, in addition to the inclusion

of the non-global component, the analysis of the resummed result at LL accuracy, 7 implies

also taking into account the impact of the kt clustering algorithm on the resummation.

7For the dijet azimuthal deccorelation, collinear singularities do not contribute (double logarithms are absent)
and all leading terms arising from large angle soft emission i.e., single logarithms are leading logs (LL).
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Figure 3.6: A schematic representation showing gluon configurations (correlated emissions)
that produce non-global logs at leading-order in dijet events at fixed-order O(α2

s).

NGLs with anti-kt calculation

Besides to the single Sudakov logarithms associated with primary soft wide angle emissions,

our specific dijet azimuthal decorrelation example starts receiving a new set of large single

logarithms of the type (αs ln 1/∆)n. These large logarithms are known as non-global logarithms

(NGLs), which by definition start appearing at O(α2
s) in the perturbative expansion. The

said new contributions are essentially associated with energy ordered large angle secondary

branching (correlated) soft gluon emissions originating from the complementary region of phase

space i.e., inside jet regions, as illustrated in Fig. 3.6. To obtain the structure of NGLs, we now

carry out an explicit two gluons calculation k1 and k2, considering the eikonal approximation,

i.e., strong energy ordering (kt1 ≫ kt2). In the said approximation we shall only focus on

the irreducible term of the factorised two-loops amplitude squared for the emission of two real

gluons off the initiating hard qq̄ pair, which is given by

WRR

12 = 2CF CA A12
ab , (3.22)

with

A12
ab = ω1

ab

(
ω2
a1 + ω2

1b − ω2
ab

)
. (3.23)

The latter term which accounts for correlated emissions ∝ CFCA, missed by the single gluon

exponentiation that we will discuss later, will generate NGLs we aim to study and resum.

The NGLs are completely produced by the soft emission k2 emitted outside both jets that is

coherently radiated by the soft, but harder emission k1 emitted inside the jet. While the real

gluon k2 produces small deviation of the recoil azimuthal angle from zero, its corresponding

virtual correction does not (see Fig. 3.6 ). This causes real-virtual mis-cancellation in the

jet-shape fraction and thus ultimately leading to NGLs.
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NGLs with kt

We now highlight the fact that the use of the kt clustering algorithm has proved useful in

reducing the NGLs involved in the integrated distribution due to the soft clustering inherent

in such algorithm. When the real soft gluon emitted outside both jets from the harder one

that is emitted inside the jet is closest to its parent emitter in rapidity and azimuth, it gets

clustered back to the jet. This case entirely cancels against virtual corrections and therefore

makes no contribution to NGLs. By employing this clustering procedure, NGLs significantly

diminish because their dominant contribution is only when the two gluons are unaffected by

the clustering. As a result, a real-virtual mismatch occurs, and NGLs are produced.

3.3.3 CLustering logarithms

While the use of the kt clustering algorithm can significantly reduce the non-global logarithm

component, we shall now argue that it gives rise to yet another type of large single logarithms

in the independent emission part. We refer to these large logs “clustering logs” (CLs) that

first appear at two-loops O(α2
s) from the regions which are cancelled in the ant-kt case. For a

resummation aiming at LL accuracy in the azimuthal deccorolation, such miscancelling contri-

butions must thus be investigated. While the leading double-logarithms which are absent for

the observable at hand, remain exactly unchanged as for the anti-kt case, at single logarith-

mic accuracy, soft gluon clustering modifies the global term which distinguishes from a single

gluon’s naive exponentiation. There are four distinct diagrams contributing to the independent

emission of two soft gluons in the energy ordered regime kt1 ≫ kt2. These diagrams which

are illustrated in Fig. 3.7, all share the same contribution to the squared matrix element for

ordered two-gluon emission, up to a sign. One can write the contributions for both double real

(1) and double virtual (4) diagrams as follows

W(k1, k2) = 4CF
2 g4s ω

1
ab ω

2
ab . (3.24)

The one-real one-virtual terms (2) and (3) in Fig. 3.7 both hold the same result as well, with

opposite sign. In this picture, we can have four different regions based on the position of the

gluons k1 and k2: k1, k2 outside the jet, k1, k2 inside the jet or either of the gluons inside and the

other outside the jet. The distance measures to consider are : d12, d2j, d1j, d2, d1. The smallest

of these distances will always be those containing particle 2 because they have k2t2. Since we

always consider particle 2 to be outside the jet then d2 < d2j , and hence d2j becomes irrelevant

and we do not compare with it. The aforementioned regions all yield the same results as the

anti-kt algorithm, except the case when the hardest gluon k1 is inside the jet (d1j < d1) and

the softest gluon k2 is outside both jets (d2j > d2), will give a non zero contribution. We first

start with diagram (3), where k1 is virtual, and thus cannot pull k2 inside the jet. This diagram
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Figure 3.7: Feynman diagrams that give rise to independent two-gluon emission from a hard
parton line.

will be vetoed (since real emissions with δφ > ∆ are not permitted), and consequently have

no contribution to the azimuthal deccorolation distribution. Then we consider diagrams (2)

and (4), where both of them will contribute but with a relative minus sign (δφ < ∆ is always

fulfilled for virtual contributions), and thus cancel each others, living only diagram (1). When

d12 < d2, the real gluon k1 gets cluster k2 back to the jet and so diagram (1) will contribute

to the azimuthal deccorolation as a virtual diagram with a plus sign, making large CLs take

place.

3.3.4 Resummation

IRC safe QCD observables are defined to be unaffected by the emission of soft momenta and by

the splitting of a final state momentum into collinear momenta [41,62].8 Once this property is

fulfilled, event/jet shapes distributions can be systematically computed in PT. The fixed order

description expands the experimentally measured event/jet shape distribution (y) of high pt

QCD jets in powers of the strong coupling αs into leading order (LO), next to leading order

(NLO), next to next to leading order (NNLO), and so on. These power series are in fact assumed

to be finite order by order in PT. However, the soft and collinear region in phase space results in

infrared divergences in QCD matrix elements. By adding real and virtual contributions, these

divergences are cancelled for IRC safe observables. This is strictly true and the fixed order

calculation is reliable and convergent only far away from the two-jet region, say, in regions of

phase space where radiation of hard and large angle gluons dominates and the event/jet shape

rather have large values (y ∼ 1). Fixed-order calculations are usually carried out with the

help of Fixed-order Monte Carlos (FOMCs) such as EVENT2 [42], and EERAD3 [43], for e+e−

annihilation. While the typical accuracy of EVENT2 is next-to-leading order (NLO), it reaches

next-to-next-to-leading order (NNLO) with EERAD3.

On the other hand, in the exclusive boundary of phase space, say, in regions of small y

(y ≪ 1) with any additional partons being soft and/or collinear to the original event partons,

the events resemble the born event and are dominated by the two-jet configurations. It turns

out that they even satisfy the Sterman Weinberg criteria but nevertheless the perturbative

expansion can be divergent order by order in PT. This divergence follows primarily from the

8Infrared and collinear safety has long been used as key criteria by Sterman Weinberg to determine which
observables can be calculated with pQCD.
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Figure 3.8: Left: vetoed emission. Right: accepted emission.

miscancellation of infrared and/or collinear singularities at the matrix-element level. This is

due to the fact that the suppression of real emissions (vetoed) without any corresponding

restriction on virtual ones producing the loss of balance between theme (see Fig. 3.8). The

said mismatch between real and virtual emissions which results in the manifestation of large

logarithmic corrections in ratios of the energy scales present in the process involving jet pt, jet

radius R, and the measured value of the jet shape, spoil the convergence of the perturbative

expansion in αs. So to restore this convergence, it is necessary to resort to the summation

of these large logarithms to all orders in αs. Such a task which is a completely satisfactory

solution within the context of PT is what one refers to as “resummation”. In general for global

observables, one can show that these large logarithms exponentiate, which allows one to write

the normalised integrated cross-section for the event/jet shape to be smaller than some value

y as follows:

Σ(y) = C(αs) exp
[
Lg1(αsL) + g2(αsL) + αsg3(αsL) + ...

]
+D(αs, y) , (3.25)

with L = ln(1/y), C(αs) sums the loop constants and the remainder function D(αs, y) vanishes

in the limit y → 0. The function g1(αsL) resums leading logarithms (double logarithms (LL)),

αn
sL

n+1, g2(αsL) resums next-to-leading logarithms (single logarithms (NLL)), αn
sL

n, g3(αsL)

resums next-to-next-to-leading logarithms (NNLL), αn
sL

n−1, and so on. This exponentiation

originates essentially from the factorisation property fulfilled for global observables both for

the n-particle QCD matrix elements (in the eikonal limit) as well as for the phase space that

may be divided into hard and soft pieces after employing an integral transform conjugate to

the kinematical variable y [62]. The all-orders perturbative expansion of Σ(y) may be cast in

the form

Σ(y) = 1 +
∑

n=1

(
αs

2π

)n( 2n∑

m=0

RnmL
m +O(y)

)
. (3.26)

One convention is to refer to all terms αn
sL

2n,9 as leading logarithms (LL), terms αn
sL

2n−1,

as next-to-leading logarithms (NLL), terms αn
sL

2n−2, as next-to-next-to-leading logarithms

(NNLL), etc.

9Note that the accuracy of the resummation in the exponent is distinct from that in the expansion.
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Global Resummation

To calculate the resummed distribution of primary global logarithms, we first consider the

factorisation of the real emission contribution to the integrated shape distribution. The integral

to be considered related to the probability for events with |π−∆φ| to be less than a given value

∆, may be written explicitly to all orders in the following factorised form

Σr(∆) =

∞∑

n=0

1

n!

n∏

i=1

∫
dkti
kti

d cos θi
sin2 θi

dφi

2π

αs(kti)

π
2CF ω

i
abΘ



∆−
∑

i/∈jets

2kt,i
Q

| sinφi|



 , (3.27)

where the superscript r denotes the real emission case. The symmetry factor which allows for

the permutation of n identical gluons does drop off when a specific ordering of the partons

transverse momenta (e.g., ktn ≪ · · · ≪ kt2 ≪ kt1 ≪ Q) is assumed. Notice that the coupling

being runing at a renormalisation scale kti for the ith emission. What remains is the factorization

of the shape fraction step function which is only feasible in a conjugate space using the following

transformation

Θ


∆−

∑

i/∈jets

2kt,i√
s
| sinφi|


 =

1

π

∫ +∞

−∞

db

b
sin(b∆)

n∏

i/∈jets

exp

(
ib
2kt,i√
s
| sinφi|

)
, (3.28)

where b is the conjugate of ∆. To figure out the total correction, we must now account for

virtual emissions whose matrix element corresponds exactly to that in the real emission case

with an overall minus sign. The resummed result is given by

Σ(∆) =
1

π

∫ +∞

−∞

db

b
sin(b∆) exp (−Σ1(b)) , (3.29)

where

Σ1(b) = − 2CF

∫
dkt
kt

dφ

2π

αs(kt)

2π

d cos θ

sin2 θ
ω1
ab

[
exp

(
i b

2kt√
s
| sinφ|

)
− 1

]
. (3.30)

The −1 term stands for the virtual correction. Taking account of secondary gluon branching

the running coupling should be evaluated in the Catani-Marchesini-Webber (CMW) scheme

often considered

αs = αMS
s

(
1 +

αMS
s

2π
K

)
, (3.31)

with

K = CA

(
67

18
− π2

6

)
− 5

9
nf . (3.32)
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Figure 3.9: A set of energy-ordered soft and collinear gluons emitted inside jet regions with
complex geometrical structure will coherently emit a single softest gluon outside both jets. Such
configurations give rise to non-global logs at higher orders.

To compute the above resummed exponent to NLL accuracy we are considering, we can make

the following substitution

exp

(
i b

2kt√
s
| sinφ|

)
− 1 → −Θ

(
kt −

√
s

2b̄

)
, (3.33)

where b̄ = γE b with γE = 0.577 being the Euler-Mascheroni constant. Thus we arrive at the

following result

Σ1(b̄) = 2CF

∫
dkt
kt

dφ

2π

αs(kt)

2π

d cos θ

sin2 θ
ω1
ab Θ

(
kt −

√
s

2b̄

)
. (3.34)

The evolution parameter t is given by

t(b̄) ≡
∫ √

s/2 αs(kt)

π

dkt
kt

Θ

(
kt −

√
s

2b̄

)
= − 1

2πβ0
ln(1− 2λb̄) , (3.35)

with λb̄ = αsβ0 ln b̄. The global resummed shape distribution in the b space is merely the

exponentiation of the single parton emission shape fraction. After resummation is achieved,

in order to perform the b integral in Eq. (3.29), we use the saddle point method. It may be

shown that the saddle point in the b integral to SL accuracy is simply given by 1/∆. The global

resummed shape distribution in the ∆ space is

Σglobal(∆) = exp [Σ1(∆)] . (3.36)
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LL and NLL resummation

For the observable at hand, azimuthal deccorelation, which is non-global, the all order cal-

culation described above is not sufficient to achieve full LL accuracy. In order to do so, non

global contributions must be resummed to all orders and we must consider configurations of

many soft gluons. At the nth order of this configuration, a complex geometrical structure can

be produced with the (n− 1) soft and collinear energy-ordered particles emitted inside the jet,

that will coherently emit a single softest gluon outside both jets as shown in Fig. 3.9. While

the resummation of the aforementioned primary global logs to all orders is feasible and rela-

tively straightforward, this complicated geometry makes the analytical resummation of NGLs

to all orders highly cumbersome. Moreover, the color algebra is complicated because of color

correlations. NGLs were first analyzed using the large Nc limit whereby the color correlations

become trivial. Furthermore, Monte Carlo (MC) provides an easy way to handle the compli-

cated geometry numerically either using a dipole evolution code [52] or resorting to the BMS

equation [95]. A key point to notice is that the resummation of NGLs is expressed as a factor

S(t) multiplying the single gluon Sudakov form factor

Σ(∆) = exp [Σ1(∆)] S(t) . (3.37)

A widely used parametrisation of S(t) is given in [52]

S(t) = exp

[
−CA

2

2
S2(R)

(
1 + (at)2

1 + (bt)c

)
t2
]
, (3.38)

where S2 is the NGLs coefficient at O(α2
s) and the parameters a, b and c are determined from

fitting Eq. (3.38) to the output of the MC program of [52].

The resummed distribution, which imposes kt clustering on the final state, can be written

in the factorised form shown below

Σ(∆) = exp [Σ1(∆)] S(t) Cp(t) , (3.39)

where Cp(t) is the CLs resummed form factor, and the all-orders result is currently only available

via the MC code of [52].

In order to achieve full NLL accuracy in the large Nc limit with anti-kt clustering, we

have used the recently-published program Gnole [126, 127]. The following chapters provide a

comprehensive discussion of this issue of resummation including CLs and/or NGLs.



Chapter 4

Dijet azimuthal decorrelation in e+e−

annihilation

4.1 Introduction

The production of jets in e+e− collisions is a simple and clean environment, yet rich of physics,

to test QCD and the Standard Model. It will be used in future colliders such as the ILC and

FCC-ee in order to make precise measurements of QCD-related quantities, which together with

detailed theoretical calculations will pave the way towards potential discovery of new-physics

phenomena.

At lowest order two correlated jets are produced back-to-back with a relative azimuthal an-

gle equal to π. At higher orders the jets manifest a decorrelation of azimuthal angle δφ which is

enhanced near the back-to-back limit. The quantity δφ, being sensitive to soft/collinear QCD

effects, is of great interest in the phenomenology of perturbative and non-perturbative QCD

dynamics. For instance it has been used to study unintegrated parton distribution functions

in deep-inelastic e − p scattering (DIS) [107] and small-x BFKL effects [108], as well as mea-

surements of the QCD coupling at various scales [109]. Many studies have been devoted to the

distribution of δφ in various processes, such as dijet production in p − p [110–112] (and even

p−pb [113]) collisions and DIS [108,114]. Experimentally, boson-jet (in pp collisions) [115] and

lepton-jet or photon-jet (in DIS) [116, 117] decorrelations have been measured.

Near the back-to-back limit, the distribution of the azimuthal decorrelation is characterized

by large logarithms preventing the convergence of the perturbative series, and thus need to be

resummed to all orders. Depending on the nature of the algorithm being used to define the jets,

the leading logarithms in this distribution can be double or single logarithms. For instance, in

pt-weighted recombination scheme of the kt [118–120], anti-kt [121] and Cambridge/Aachen al-

gorithms [122,123], the leading logarithms are double, αn
sL

2n, while in E-scheme recombination

they are single, αn
sL

n, with L = ln(1/δφ). In the former scheme, the jets recoil against emissions

50
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everywhere in the phase space, and in particular soft and collinear emissions to these jets, which

leads to the double logarithms in δφ. On the other hand, in the latter (E-scheme), the jets

recoil only against emissions that do not get clustered to them, and hence only away-from-jets

emissions contribute to δφ, resulting in leading soft wide-angle single logarithmic contributions.

In addition to this, the classification of the δφ observable, in E-scheme definition, falls in the

“non-global” category, and as a consequence its distribution receives contributions from single

non-global (NGLs) [52, 94] and/or clustering (CLs) [49, 50] logarithms. The resummation of

these logarithms is not straightforward, and is usually performed numerically via Monte Carlo

(MC) programs in the planar (large-Nc) limit.

In this chapter, we are interested in the calculation of NGLs and/or CLs for the δφ distri-

bution both in the kt and anti-kt algorithms. We compute the coefficients of these logarithms

as a function of the jet radius R up to O(α3
s), and at O(α4

s) in the anti-kt algorithm at small R.

We use the fixed-order MC program EVENT2 [124,125] in order to compare the leading singular

behavior of the δφ distribution with our results at O(αs) and O(α2
s). We also compute the

resummed NGLs and CLs at all orders in the large-Nc limit using the MC code of refs. [52,94]

as well as the recently-published program Gnole [126,127] (in the anti-kt algorithm). The latter

program is also used to compute the resummed differential δφ distribution at next-to-leading

logarithmic (NLL) accuracy, in which we additionally control all the sub-leading logarithms

αn+1
s Ln in the exponent of the resummation, and quantify the corresponding scale uncertain-

ties.

This chapter is organized as follows. In the next section we compute at O(αs) the leading-

order distribution focusing on the logarithmic contribution, and compare with fixed-order MC

programs at this order. In section 3, we present the calculation of NGLs and CLs at O(α2
s) and

show plots of the coefficients of these logarithms as a function of the jet radius and comment

on the relative size of these coefficients. We also compare at this order the calculated δφ

distribution with the output of the program EVENT2, thus confirming our results. In section 4

we extend the calculation to O(α3
s) and (in the anti-kt algorithm and at small R) O(α4

s), and

point out the significantly different color structure of NGLs in kt clustering. In section 5 we

present the all-orders resummation of the NGLs and/or CLs in the large-Nc limit up to LL

accuracy for the kt algorithm, and NLL accuracy in the anti-kt clustering. Finally we draw our

conclusions in section 6.

4.2 One-loop calculation and the global form factor

In this chapter we consider the process of dijet production in e+e− annihilation at centre-of-

mass energy
√
s. The jets are reconstructed with the kt [120] or anti-kt [121] algorithms, suited
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for e+e− annihilation, with merging and stopping distances dij and di defined by

dij = min
(
E2p

i , E
2p
j

) 1− cos θij
1− cosR

, di = E2p
i , (4.1)

where p = +1 for the kt algorithm and p = −1 for the anti-kt algorithm. Here R is the jet

radius, Ei is the energy of the ith parton in the final state, and θij is the opening angle between

partons i and j. The algorithm sequentially merges objects i and j whenever dij is the smallest

of all merging and stopping distances, and if an object i has its stopping distance as the smallest

then it gets admitted to the list of final inclusive jets. The algorithm keeps recursing until all

partons are clustered into jets. In this work, we assume the jet kinematics to be defined with

E-scheme recombination, such that the 4-momentum of a merged object simply equals the

vectorial sum of the momenta of its constituents.

At the Born level, the two jets are produced back-to-back, and their relative azimuthal

angle (with respect to the beam axis) is exactly π. The observable we are interested in is the

deviation from π of this relative azimuthal angle, δφ, when soft gluons are emitted at higher

orders. It is straightforward to obtain the following expression for δφ in terms of the transverse

momenta of the emitted gluons κti and their azimuthal angles ϕi, with respect to the beam axis

δφ =

∣∣∣∣∣∣

∑

i/∈jets

κti
pt

sinϕi

∣∣∣∣∣∣
, (4.2)

where pt is the jet transverse momentum. The (algebraic) sum is over all emitted gluons that

are not clustered to any of the two measured (leading) jets. This definition is valid only at

single leading logarithmic (LL) accuracy, and we shall give the proper definition, valid at NLL

accuracy, in section 5. Furthermore, the expression of δφ in eq. (4.2) only applies in E-scheme

recombination. Alternative jet recombination schemes exist for which the jet kinematics take

a different form, e.g. the pt-weighted scheme, and the resummation takes an entirely different

structure [114].

At one loop the cumulative cross-section for events with azimuthal decorrelation δϕ less

than some ∆, normalized to the Born cross-section, reads

Σ1(∆) = −2CF

∫
αs(kt)

π

dkt
kt

d cos θ

sin2 θ

dφ

2π
ωk
qq̄ Θout(k) Θ (κt| sinϕ|/pt −∆) , (4.3)

where θ, φ and kt are the polar angle, azimuthal angle and transverse momentum of the emitted

soft gluon k, with respect to the jet (thrust) axis (the back-to-back outgoing jets are aligned

along the z axis), CF is the color factor associated with the emission of the gluon off the hard

qq̄ dipole, and αs is the strong coupling with argument kt. The invariant antenna function ωk
qq̄
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is given by

ωk
qq̄ =

k2t
2

pq · pq̄
(pq · k)(pq̄ · k)

= 1 , (4.4)

with pi denoting the momentum of particle i

pq =

√
s

2
(1, 0, 0, 1) , (4.5a)

pq̄ =

√
s

2
(1, 0, 0,−1) , (4.5b)

k = E (1, cosφ sin θ, sinφ sin θ, cos θ) , (4.5c)

where kt = E sin θ. The constraint Θout(k) restricts the emitted gluon to be outside the jets

and forbids it from being clustered to any of them in order to induce a non-zero azimuthal

decorrelation. It depends on the jet radius R and is given, in the generalized algorithm, by

Θout(k) = Θ (cosR− | cos θ|) . (4.6)

Since the soft emission is restricted to be outside both jets then there are no collinear

logarithms associated with this observable. This means that the leading logarithms are single,

which allows us at LL accuracy to simply change Θ(κt| sinϕ|/pt−∆) → Θ(2 kt/
√
s−∆), since

any factor multiplying kt will only induce sub-leading logarithms. 1 We can then perform

the integration over kt using the one-loop running of the coupling (which formally enters the

distribution at higher orders), and write the result in terms of the evolution parameter t defined

by

t(∆) ≡
∫ √

s/2 αs(kt)

π

dkt
kt

Θ
(
2 kt/

√
s−∆

)
= − 1

2πβ0
ln(1− 2λ) , (4.7)

where λ = αs(
√
s/2)β0 ln(1/∆) and β0 is the one-loop coefficient of the QCD beta function.

The angular integration is straightforward and we obtain

Σ1(∆) = −2CF t(∆)

∫ 1

−1

dc

1− c2
Θ (cosR− |c|) = −2CF t(∆) ln

1 + cosR

1− cosR
, (4.8)

with c standing for cos θ. Note that since only emissions in the inter-jet (gap) region are

integrated over, this result may be cast in terms of the rapidity-gap width ∆η

∆η ≡ ln
1 + cosR

1− cosR
. (4.9)

The all-orders resummed global form factor is simply the exponential of the one-loop distribu-

tion. That is

Σglobal(∆) = exp [−2CF t(∆)∆η] . (4.10)

1Notice that κt and ϕ are different from kt and φ.
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An identical expression was also arrived at in ref. [128] for jet shapes in e+e− annihilation.

The leading-order result can be verified by comparing it with the output of the MC program

EVENT2 at O(αs) [124, 125]. Specifically we compare the differential distribution

2π

αs

dΣ1

dL
= 4CF ln

1 + cosR

1− cosR
, (4.11)

where L = ln∆, with the same MC distribution, for the chosen value of R = 0.5. We show

in figure 4.1 a plot of the difference between the MC distribution and the expansion of the

resummation at O(αs), where, as expected, this difference tends to zero in the logarithmically-

enhanced region.

Figure 4.1: The difference between the leading-order EVENT2 differential distribution
2π/αs dΣ1/dL and the resummed distribution expanded at O(αs). The singular behavior of
the MC distribution is exactly cancelled by the expanded result.

4.3 Two-loops calculation: NGLs and CLs

When employing the kt or anti-kt clustering algorithms with E-scheme recombination, the re-

summation of the azimuthal decorrelation distribution requires the treatment of NGLs and/or

CLs. The corresponding cumulative distribution at O(α2
s) can then be split into three contri-

butions

Σ2(∆) =
1

2!
[Σ1(∆)]2 + ΣNG

2 (∆) + ΣCL
2 (∆) , (4.12)

with ΣCL
2 (∆) = 0 for anti-kt clustering. Let us first discuss the NGLs contribution ΣNG

2 (∆) in

both algorithms, and then compute the CLs contribution ΣCL
2 (∆) for kt clustering.

4.3.1 Calculation of NGLs

The origin of NGLs at two loops is the emission of a soft gluon k1 inside any of the two outgoing

jets which itself emits a softer gluon k2 outside the jets without being clustered back to them.
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While this configuration results in a non-zero δφ, its virtual correction (specifically when k2 is

virtual) gives δφ = 0, and thus we have a real-virtual mis-cancellation of the soft singularities.

We express the contribution of the uncancelled virtual correction to the integrated azimuthal

decorrelation distribution as follows

ΣNG
2 (∆) = S2(R)

t2

2!
, (4.13a)

S2(R) = −2CF CA

∫
dc1

1− c21

dφ1

2π

dc2
1− c22

dφ2

2π
A12

qq̄ Ξ
NG
2 (R) , (4.13b)

where CA is the color factor associated with the non-Abelian emission of gluon k2 off k1. The

irreducible two-loops antenna function A12
qq̄ is given by [93]

A12
qq̄ = ω1

qq̄

(
ω2
q1 + ω2

1q̄ − ω2
qq̄

)
=

1− c1c2
1− c1c2 − s1s2 cos(φ1 − φ2)

− 1 , (4.14)

with si ≡ sin θi. The function ΞNG
2 restricts the angular phase-space of integration and is given,

in the anti-kt and kt algorithms respectively, by

ΞNG, akt
2 = Θin(k1)Θout(k2) , (4.15a)

ΞNG, kt
2 = Θin(k1)Θout(k2)Θ(d12 − d2) . (4.15b)

The step function Θ(d12 − d2) forbids gluon k2 from being clustered back to the jet in the kt

algorithm. It is given by Θ(cosR− cos θ12), with cos θ12 = c1c2 + s1s2 cos(φ1 − φ2).

In the anti-kt algorithm the integration is simple and its result can be expressed in the same

form as that of the rapidity-gap NGLs coefficient found in ref. [94]

Sakt
2 (R) = −CF CA

[
π2

6
+ 2∆η2 − 2∆η ln

(
e2∆η − 1

)
− Li2

(
e−2∆η

)
− Li2

(
1− e2∆η

)]

= −CF CA

[
π2

3
− R4

8
− R6

24
− 29R8

2560
+O

(
R10
)]
, (4.16)

where ∆η(R) is defined in eq. (4.9). The above formula shows that in the limit R → 0 the

two-loops NGLs coefficient does not vanish, but rather reaches its maximum value. This feature

was observed in ref. [94] and was ascribed to the fact that NGLs originate from the edge of jets,

since this is the phase-space region where gluons k1 and k2 are collinear and thus the amplitude

squared (4.14) is most singular.

In the kt algorithm, and at small values of R (using small angles), we can write the NGLs
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coefficient as

Skt
2 (R ∼ 0) = −8CF CA

∫ 1

0

dθ1

∫ ∞

1

dθ2

∫ 2π

0

dφ

2π

1

(θ21 + θ22) sec φ− 2 θ1 θ2
×

× Θ
(
θ21 + θ22 − 2 θ1 θ2 cosφ− 1

)
= −2π2

27
CF CA , (4.17)

where we made the following changes of variables: φ = φ1 − φ2 and θi → Rθi. Away from the

small-R limit one may perform the integration numerically to obtain the full-R result for the

two-loops coefficient of NGLs. We present the results in the following subsection together with

the CLs coefficient.

4.3.2 CLs with kt clustering

To compute the CLs we consider the Abelian primary emission of two strongly-ordered gluons

directly off the hard qq̄ dipole, whereby the harder gluon k1 is inside one of the two jets and

the softer k2 is outside both of them, with the constraint d12 < d2, such that gluon k2 gets

clustered into the jet by gluon k1, which leads to δφ = 0. However, when k1 is virtual then

gluon k2 remains in the gap causing the hard jets to decorrelate. In this case we obtain a large

single logarithmic contribution to the δφ distribution given by

ΣCL
2 (∆) = Ckt

2 (R)
t2

2!
, (4.18a)

Ckt
2 (R) = 4C2

F

∫
dc1

1− c21

dφ1

2π

dc2
1− c22

dφ2

2π
w1

qq̄ w
2
qq̄ Θ(|c1| − cosR) Θ(cosR− |c2|) Θ(cos θ12 − cosR) .

(4.18b)

Note again that Cakt
2 (R) = 0, as there are no CLs for anti-kt clustering.

First, let us consider the small-R limit of this integral. In this case we may write

Ckt
2 (R ∼ 0) = 8C2

F

∫ 1

0

dθ1
θ1

∫ ∞

1

dθ2
θ2

∫ 2π

0

dφ

2π
Θ
(
−θ21 − θ22 + 2 θ1 θ2 cosφ+ 1

)
=

5π2

27
C2

F . (4.19)

Away from this small-R limit we perform the integration numerically. We show in figure 4.2 a

plot of the coefficients of NGLs and CLs at O(α2
s) as a function of the jet radius R. Also shown

is the combined coefficient of CLs and NGLs in the kt algorithm; Fkt
2 = Skt

2 + Ckt
2 .

Notice that NGLs coefficient in the kt clustering algorithm is significantly smaller than that

in the anti-kt. The CLs coefficient is positive and quite small, with the advantage that it

cancels the NGLs coefficient, particularly at small values of R. Note that the overall coefficient

F2 is less than 1 for values of R smaller than about 0.5. For small R values, the anti-kt NGLs
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Figure 4.2: CLs and NGLs coefficients at two loops with kt and anti-kt clustering.

coefficient computed here is identical to that found for the single hemisphere mass [129] and

jet mass with a jet veto [128].

4.3.3 Comparison to EVENT2

We compare our two-loops results with the exact MC distribution at O(α2
s) obtained with

the EVENT2 program. The latter splits the distribution at NLO into three color contributions;

O(C2
F), O(CF CA) and O(CF Tf nf), with Tf = 1/2 being the normalization constant of the

generators of the SU(3) group in the fundamental representation and nf = 5 is the number

of active quark flavors. The expansion of the resummed distribution at this order, including

running coupling effects, is written, after differentiating with respect to L, as

(
2π

αs

)2
dΣ2

dL
=

[
C2

F 4
(
4∆η2 + C2

)
− CF CA

4

3
(3S2 + 11∆η) + CF Tf nf

16

3
∆η

]
L+O(1) .

(4.20)

At this order this differential distribution is linear in L, but does not capture the O(1) constant,

which, in the cumulative integrated distribution, is an NLL O(α2
s L) term. We plot the difference

between the MC distribution and the expansion (4.20) for each color contribution separately.

All curves should tend towards a constant when L grows large and negative. The results

are shown in figure 4.3. Here the O(C2
F) part contains the CLs coefficient in kt clustering,

while the O(CF CA) term contains the NGLs coefficient both in kt and anti-kt algorithms. The

O(CF Tf nf) contribution is algorithm independent at LL accuracy, but the NLL O(1) constant

does depend on the jet algorithm.
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Figure 4.3: The difference between the NLO EVENT2 differential distribution (2π/αs)
2 dΣ2/dL

and the resummed distribution expanded at O(α2
s). The leading logarithmic behavior of the

MC distribution O(α2
sL) is cancelled, leaving a constant behavior at large values of L.

4.4 NGLs and CLs at three loops

4.4.1 NGLs at three loops

At O(α3
s), the cumulative distribution can be written as follows

Σ3(∆) =
1

3!
[Σ1(∆)]3 + Σ1(∆)× ΣNG

2 (∆) + Σ1(∆)× ΣCL
2 (∆) + ΣNG

3 (∆) + ΣCL
3 (∆) . (4.21)

Focusing first on the pure NGLs contribution ΣNG
3 (i.e., excluding the cross-talk between the

one-loop global and two-loops non-global logarithms) in the anti-kt algorithm, we may write it

in the form

Σ
NG,akt
3 (∆) = Sakt

3 (R)
t3

3!
, (4.22a)

Sakt
3 (R) = 2CF C

2
A

∫ ( 3∏

i=1

dci
1− c2i

dφi

2π

)
[
A12

qq̄ Ā13
qq̄ Θin(k1)Θout(k2)Θout(k3)+

−B123
qq̄ Θin(k1)Θin(k2)Θout(k3)

]
, (4.22b)

where we define Ā13
qq̄ = A13

qq̄/ω
1
qq̄, and the 3-loops irreducible cascade antenna function is given

by

B123
qq̄ = ω1

qq̄

[
A23

q1 +A23
1q̄ −A23

qq̄

]
. (4.23)

It is worth mentioning that, for the cascade term, there is a non-negligible contribution from

the configuration in which gluon k1 is in one jet emitting gluon k2 in the other jet which itself

emits the softest gluon k3 in the gap between the two jets. At small values of R the integration

is quite simple and yields the result

Sakt
3 (R ∼ 0) = CF C

2
A 2 ζ3 . (4.24)

Notice that this result is twice that found for the hemisphere mass observable [102]. Away from

the small-R limit the integration can be performed numerically and we shall present the results
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in the next subsection.

The pure NGLs contribution in the kt algorithm is given by an identical form to that of the

anti-kt (4.22a)

Σ
NG,kt
3 (∆) = Skt

3 (R)
t3

3!
. (4.25)

We perform for the first time in the literature a calculation of NGLs in the kt algorithm beyond

two loops. Due to non-linearity of kt clustering we shall find a class of NGLs that have a

non-standard color factor, namely C2
F CA at O(α3

s). Such terms usually (in anti-kt clustering)

only arise in the cross-talk of the expansion of the primary-emission global form factor (4.10)

at O(αs) together with NGLs at O(α2
s), i.e., the term Σ1(∆)×ΣNG

2 (∆) in eq. (4.21). However,

in the kt algorithm, we find them as “pure” irreducible NGLs. That is, they are part of the

term ΣNG
3 (∆) in eq. (4.21).

To proceed, we consider three types of emissions at O(α3
s), as shown in figure 4.4: (a) one

primary + two correlated emissions, (b) ladder emissions, and (c) cascade emissions. In each

case we consider all possible virtual-correction Feynman diagrams as well as angular configu-

rations of the emitted gluons that affect the clustering procedure, and look for a mis-match

between the soft divergences of these emissions.

Figure 4.4: The three types of emissions to consider for NGLs calculation at O(α3
s): (a) one

primary + two correlated emissions, (b) ladder emissions, and (c) cascade emissions.

Starting first with type (a) contributions, there are three possible permutations of the gluons.
2 For the permutation in which k3 is emitted in correlation with k2, and which has a squared

amplitude 4C2
F CA ω

1
qq̄ A23

qq̄ , we find that the angular phase space of integration that yields a

logarithmic contribution is given by

Ξ
NG,kt
31 (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d23 − d3)+

+ Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3)+

−Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . (4.26)

To see how one obtains this result let us give one example of angular configurations that result

in a logarithmic contribution. There are four Feynman diagrams in this case, shown in figure

2Note that for all permutations the transverse momenta of the three gluons are strongly ordered as follows:
kt1 ≫ kt2 ≫ kt3.
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4.5. Consider the situation when particles k3 and k2 are outside the jet regions, d3j > d3 and

d2j > d2, while particle k1 is inside, d1j < d1. In this scenario, both diagrams in which k1 is

virtual (i.e., diagrams (3) and (4) in figure 4.5) yield δφ 6= 0, since in both diagrams particle k2

is real and remains in the gap region after applying the clustering. However, these two diagrams

contribute equally and with opposite signs, so they cancel each other. For the remaining two

diagrams, (1) and (2), we have a mismatch when particle k2 gets pulled inside the jet by the

real particle k1 while k3 remains in the gap. This happens when d12 is smaller than d2, and

both d13 and d23 are greater than d3. While in diagram (1) we have a real unclustered gluon

k3 in the gap region (i.e., it forms a jet on its own) giving δφ 6= 0, in diagram (2) the gap is

empty and the hard jets are exactly back-to-back with δφ = 0. The virtual-correction diagram

(2) contributes fully to the cumulative distribution while the real-emission diagram (1) cancels

this contribution only up to δφ = ∆, leaving uncancelled virtual-correction contributions with

a negative sign. This is the last term in eq. (4.26).

Figure 4.5: Feynman diagrams corresponding to the squared amplitude 4C2
F CA ω

1
qq̄ A23

qq̄ .

Similarly, we obtain for the second and third gluon permutations of type (a) diagrams,

with squared amplitudes 4C2
F CA ω

2
qq̄ A13

qq̄ and 4C2
F CA ω

3
qq̄ A12

qq̄ , respectively, as well as type (b)

(ladder-emission) contributions, with squared amplitude 2CF C
2
A Ā12

qq̄ A13
qq̄ , the same phase space

function. It is given by

Ξ
NG,kt
32 (R) = Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+

+ Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d3 − d23)+

+ Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d12 − d2) . (4.27)

Finally, for type (c) (cascade emission) contributions, corresponding to the squared amplitude

2CFC
2
A B123

qq̄ , the phase space function reads

Ξ
NG,kt
33 (R) =−Θin(k1)Θin(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)−

−Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . (4.28)

Before performing the integration, we subtract off the part of the phase space that produces

the interference term between the one-loop global primary logarithm and the two-loops NGLs,
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which only comes from type (a) emissions. For the first permutation of gluons, this part of

phase space is identified by the second term in eq. (4.26), Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3),

where gluon k1 reproduces the one-loop global term (4.8) and the other correlated gluons, k2

and k3, give the two-loops NGLs (eq. (4.13b) with phase space (4.15b)). However, for the other

two gluon permutations of type (a) emissions, the phase space (4.27) does not simply contain

such interference terms. Strictly speaking, this means that NGLs do not cleanly factorize from

the global form factor in the kt algorithm. Nevertheless, we can manually add and subtract the

interference terms and write the total distribution in the factorizable form (4.21).

We can then write the “pure” NGLs coefficient Skt
3 , given in eq. (4.25), in the following form

Skt
3 (R) = S(a)

3 (R) + S(b)+(c)
3 (R) , (4.29)

where we split the result according to the color factor, such that for type (a) emissions we have

S(a)
3 (R) = 4C2

FCA

∫ ( 3∏

i=1

dci
1− c2i

dφi

2π

)[
ω1
qq̄ A23

qq̄ Ξ̃31(R) + ω2
qq̄ A13

qq̄ Ξ̃32(R) + ω3
qq̄ A12

qq̄ Ξ̃33(R)
]
,

(4.30)

with modified phase space that subtracts away the interference terms

Ξ̃31(R) = Ξ
NG,kt
31 (R)−Θout(k1)Θin(k2)Θout(k3)Θ(d23 − d3) , (4.31a)

Ξ̃32(R) = Ξ
NG,kt
32 (R)−Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3) , (4.31b)

Ξ̃33(R) = Ξ
NG,kt
32 (R)−Θin(k1)Θout(k2)Θout(k3)Θ(d12 − d2) , (4.31c)

and for type (b) and (c) emissions

S(b)+(c)
3 (R) = 2CF C

2
A

∫ ( 3∏

i=1

dci
1− c2i

dφi

2π

)[
A12

qq̄ Ā13
qq̄ Ξ

NG,kt
32 (R) + B123

qq̄ Ξ
NG,kt
33 (R)

]
. (4.32)

We are now in a position to perform the integrations numerically as a function of the jet

radius R. We show the results in the next subsection, in which we also compute the clustering

logarithmic contribution at O(α3
s).

4.4.2 CLs with kt clustering at three loops

Following the same steps as for NGLs calculation, the phase space clustering function at O(α3
s)

for the CLs contribution, which results from the mismatch of soft singularities between real

and virtual emissions of three primary soft gluons, with a squared amplitude 8C3
Fw

1
qq̄ w

2
qq̄ w

3
qq̄,
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is given by

Ξ
CL,kt
3 (R) =−Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)−

−Θout(k1)Θin(k2)Θout(k3)Θ(d3 − d23)−

−Θin(k1)Θout(k2)Θout(k3)Θ(d3 − d13)−

−Θin(k1)Θout(k2)Θout(k3)Θ(d13 − d3)Θ(d23 − d3)Θ(d2 − d12) . (4.33)

Note that the above phase-space clustering function is similar (but not exactly identical) to

that found for the jet mass observable [53]. Extracting the interference terms between the CLs

at two loops and the global logarithm at one loop, i.e., the term Σ1(∆)×ΣCL
2 (∆) in eq. (4.21),

we reduce the above phase space function to that of the “pure” CLs contribution as

Ξ̃
CL,kt
3 (R) =−Θin(k1)Θin(k2)Θout(k3)Θ(d3 − d13)Θ(d3 − d23)+

+ Θin(k1)Θout(k2)Θout(k3)Θ(d2 − d12)[1−Θ(d13 − d3)Θ(d23 − d3)] . (4.34)

Then, the clustering logarithmic contribution to the cumulative cross-section is given by

ΣCL
3 (∆) = Ckt

3 (R)
t3

3!
, (4.35a)

Ckt
3 (R) = 8C3

F

∫ ( 3∏

i=1

dci
1− c2i

dφi

2π

)
w1

qq̄ w
2
qq̄ w

3
qq̄ Ξ̃

CL,kt
3 (R) . (4.35b)

We show in figure 4.6 a plot of the coefficients of NGLs and CLs in the kt and anti-kt

algorithms as a function of the jet radius R. Shown also is the combined coefficient Fkt
3 =

Skt
3 + Ckt

3 for the kt algorithm.

Figure 4.6: CLs and NGLs coefficients at three loops with kt and anti-kt clustering.

As in the previous section, we notice that the NGLs coefficient in the anti-kt algorithm

at this order is also quite large. Clearly, the application of the kt clustering has reduced the
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significance of NGLs by almost a factor of 30 for values less than R ∼ 0.6. The CLs coefficient

is also small such that the overall coefficient F3 is smaller in magnitude than the Sakt
3 by about

a factor of 3 for most values of R.

4.5 Four loops and beyond

4.5.1 Four-loops NGLs with anti-kt at small R

The calculation of NGLs with anti-kt clustering proceeds in a similar manner at fourth order,

and can easily be deduced from previous calculations of NGLs in the literature. In fact, the

phase space of integration is similar to that of the hemisphere mass distribution reported in

ref. [102], and thus the cumulative cross-section, at this order, may be cast in the following way

Σakt
4 (∆) =

1

4!
[Σ1(∆)]4+

1

2!
[Σ1(∆)]2Σ

NG,akt
2 (∆)+Σ1(∆)Σ

NG,akt
3 (∆)+

1

2!

[
Σ

NG,akt
2 (∆)

]2
+Σ

NG,akt
4 (∆) ,

(4.36)

with pure NGLs contribution given by

Σ
NG,akt
4 (∆) = Sakt

4 (R)
t4

4!
, (4.37a)

Sakt
4 (R) = 2CF C

3
A

∫ ( 4∏

i=1

dci
1− c2i

dφi

2π

)[
−A12

qq̄ Ā13
qq̄ Ā14

qq̄ Θin(k1)Θout(k2)Θout(k3)Θout(k4)+

+ 3 Ā12
qq̄ B134

qq̄ Θin(k1)Θout(k2)Θin(k3)Θout(k4) + U
1234
qq̄ Θin(k1)Θin(k2)Θout(k3)Θout(k4)−

− C1234
qq̄ Θin(k1)Θin(k2)Θin(k3)Θout(k4)

]
−

− 2CF C
3
A

(
1− 2CF

CA

)∫ ( 4∏

i=1

dci
1− c2i

dφi

2π

)
A

1234
qq̄ Θin(k1)Θin(k2)Θout(k3)Θout(k4) ,

(4.37b)

where the irreducible antenna functions read [93]

C1234
qq̄ = w1

qq̄

(
B234
q1 + B234

1q̄ − B234
qq̄

)
, (4.38a)

U
1234
qq̄ = w1

qq̄

(
A23

q1 Ā24
q1 +A23

1q̄ Ā24
1q̄ −A23

qq̄ Ā24
qq̄

)
, (4.38b)

A
1234
qq̄ = ω1

qq̄ ω
2
q1

(
Ā23

qq̄ − Ā23
q1

) (
Ā24

q1 − Ā24
1q̄

)
+ ω1

qq̄ ω
2
1q̄

(
Ā23

qq̄ − Ā23
1q̄

) (
Ā24

1q̄ − Ā24
q1

)
−

− ω1
qq̄ ω

2
qq̄

(
Ā23

q1 − Ā23
qq̄

) (
Ā24

1q̄ − Ā24
qq̄

)
+ k3 ↔ k4 . (4.38c)

At small values of R the integration has been performed in ref. [102], and the corresponding

result is given by

Sakt
4 (R ∼ 0) = −CF C

3
A ζ4

[
29

4
−
(
1− 2CF

CA

)]
. (4.39)
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4.5.2 LL resummation

In this section we present numerical results for the resummation of NGLs and CLs in the

large-Nc approximation. For this we use the MC code first developed in refs. [52, 94] with

modification of kt clustering in terms of distances (4.1). The results are shown in figure 4.7 for

the resummed cumulative distribution Σ as a function of the evolution parameter t (4.7), for

the particular value of the jet radius R = 0.5. Shown in the figure are: results for the (primary)

global distribution (black curve), obtained by running the MC program using anti-kt clustering

and allowing only for primary emissions, and the full anti-kt distribution (solid pink curve)

which additionally includes NGLs at large Nc. We observe the very large impact of NGLs on

the distribution, reducing the global form factor by a factor of 10 for t = 0.3.

Figure 4.7: Numerically resummed NGLs and CLs at large Nc.

We also show in the same figure the primary-emission distribution obtained by running

the above-mentioned program with kt clustering (solid green curve), which includes the global

form factor together with the resummed CLs, as well as the overall distribution in kt clustering

which includes in addition the resummed NGLs (solid purple curve). We observe that the

distribution in kt clustering is affected by both CLs and NGLs, but the combined impact of the

two is noticeably small. This means that CLs tend to cancel NGLs in kt clustering, as noted

with the fixed-order calculations performed above.

Moreover, we show in figure 4.7 the analytical results for the resummed distribution in each

case (dashed lines), which are estimated from the observed pattern of exponentiation

Σ(∆) = exp [Σ1(∆)] exp

[ ∞∑

i=2

ΣNG
i (∆)

]
exp

[ ∞∑

i=2

ΣCL
i (∆)

]
. (4.40)

It is clear that the truncation of the series at i = 3 in the exponent, though quite close to

the numerical result, does not give an accurate fit of the MC distribution. This means that

higher-order contributions cannot be ignored.
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4.5.3 NLL resummation with anti-kt

We present here a resummed result for the azimuthal decorrelation distribution with anti-kt

clustering at NLL accuracy in the large-Nc limit, obtained using the recently-published program

Gnole [126,127]. The distribution can be obtained from this program by defining our observable

within the code, using the full definition rather than the LL approximation (4.2). Explicitly

written the former reads

δφ =

∣∣∣∣∣∣
sin−1

∑

i/∈jets

k⊥i

ptr

∣∣∣∣∣∣
, (4.41)

where k⊥i is the component of the transverse momentum of the emission i perpendicular to the

thrust (or leading jet) axis, and ptr is the recoiling jet’s transverse momentum. For simplicity

we take the jets to be at threshold, i.e., transverse to the beam direction.

Figure 4.8: NLL numerical resummation of the δφ distribution at large Nc.

In figure 4.8 we present the results for the NLL resummed distribution together with the

LL one, both obtained with Gnole. We note here that the LL distribution is obtained using the

definition of the observable (4.41), while that obtained with the MC code of refs. [52,94] (figure

4.7) is essentially equivalent to the transverse energy distribution (in other words, definition

4.2 without the sinφ part). This does in fact numerically affect the distribution even at LL

accuracy. 3

We observe that the NLL corrections to the distribution are quite important, just like the

transverse energy distribution shown in ref. [127]. Furthermore, the scale-uncertainty band,

obtained by varying the renormalization and resummation scales by factors of 2 and 1/2 around

their central values (µR =
√
s and Q0 =

√
s/2, respectively, with

√
s =MZ), gets significantly

reduced in the NLL curve. It is worth mentioning that one still needs to account for the

matching in order to fully control all sub-leading NLL logarithms at the tail of the distribution.

3Note that it is not possible to change the definition of the observable in the MC code of refs. [52, 94].
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We note that the actual distribution does not possess a Sudakov peak at low values of δφ,

instead it tends towards a constant value. This is explained by the fact that the very low values

of δφ are not suppressed by soft emissions, but are rather enhanced by vectorial cancellation of

semi-hard emissions.

4.6 Summary

The azimuthal decorrelation δφ for dijet production in e+e− annihilation, is a typical exam-

ple of a jet shape distribution that promise to provide valuable information on perturbative

and non-perturbative QCD dynamics. Employing the four vector recombination scheme (E−
scheme), the observable at hand is non-global. One of the main complications that arise in

such observables particularly at leading logarithmic accuracy, are two fold. On the one side,

non-global logarithms will arise in the jet shape distribution when the jets are defined using

both the kt and anti−kt clustering procedures. On the other side new logarithmic contributions,

clustering logs in the independent emission piece will show up at the said logarithmic accuracy,

when the kt clustering algorithm is applied. These logarithms are jet-algorithm dependent, and

start to appear at two loops and are quite delicate to compute.

In this chapter we have calculated the full-R expression analytically at two loops and nu-

merically at three loops for the anti-kt jet algorithm for NGLs. At four loops, they have been

determined only for small-R values for the same said jet algorithm. For the kt clustering al-

gorithm, calculations have been performed up to three loops and only numerically. In the kt

algorithm, we have unearthed “pure” non-global contributions with color factor C2
F CA at O(α3

s)

that have no alike in the anti-kt algorithm, due to non-linearity of the kt algorithm.

Moreover, CLs, which are absent in the anti-kt algorithm, have been computed numerically

up to three loops. The usual reduction in the significance of NGLs due to kt clustering has

been observed confirming previous findings. Furthermore, the combined impact of NGLs and

CLs on the distribution is observed to be very small which has important phenomenological

implications in terms of accuracy of the resummed distribution. Our results at two loops have

been checked against the output of the MC program EVENT2.

Numerical estimates of the all-orders distribution has been presented both at LL and NLL

accuracy. The achievement of the latter accuracy have been made possible by the recently-

published Gnole code, thus achieving state-of-the-art accuracy for the resummation of this

quantity.

In the next chapter we present an attempt to analytically resum non-global logarithms to

all orders using the BMS equation. The hemisphere mass distribution in e+e− collisions will

serve as a generic example of non-global event shape observables.



Chapter 5

Eikonal amplitudes and non-global

logarithms from the BMS equation

5.1 Introduction

Achieving precision in the calculation of QCD observables at particle colliders is usually hin-

dered by many perturbative and non-perturbative issues. The resummation of large logarithms

is one such issue. Uncanceled virtual emissions above some scale Q0 up to a renormalisation

scale µR contribute to the integrated distribution of the observable in question when real emis-

sions above Q0 are cut, leading to logarithms of the form αn
s ln

m(Q0/µR), with m ≤ 2n for

observables sensitive to soft and/or collinear emissions (e.g., jet mass), while m ≤ n for observ-

ables sensitive to soft wide-angle emissions alone (e.g., energy flow into gaps between jets). In

this paper we consider the former case of double logarithmic enhancements, i.e., up to (αs L
2)n,

with L = ln(Q0/µR).

In the leading logarithmic (LL) accuracy all double logarithms of the form αn
sL

n+1 in the

exponent of the distribution are resummed, and in the next-to-leading logarithmic (NLL) ac-

curacy all single logarithms αn
sL

n are additionally resummed. The resummation of these large

logarithms is particulary quite simple for observables that are inclusive over emissions in the

entire angular phase space since typically a limited number of gluon emissions needs to be con-

sidered in order to reproduce the all-orders behaviour of the distribution of the said observables.

However, most of the observables that are interesting for new physics, are sensitive to

radiation only in a restricted region of phase space and pointed out as non-global. The topic of

resummation of NGLs has seen a lot of interest in the literature, see the introductory chapter 1.

In this chapter we consider the integrated hemisphere mass distribution in the process e+e− →
qq̄, and propose a solution to the BMS equation for NGLs in the form of an exponential. The

exponent is written as a series in the strong coupling (or equivalently the evolution parameter),

and we show how it may be resummed by illustrating the partial resummation of the two-loops

67
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term in the exponent. The results we find are consistent with those obtained by Shwartz and

Zhu in Ref. [96] which were written as an expansion in the coupling in the actual distribution

and not in the exponent. The benefit of writing the series in the exponent is to avoid obvious

interference terms that pop up in the series expansion. The proposed solution paves the way

for a clearer picture for all-orders resummation as it subtracts away any such interferences.

Additionally, the present work serves as a stringent test on the validity of both the BMS

equation as well as the work done in Refs. [93,102], by showing how Eikonal amplitudes used in

the latter references are correctly reproduced by the BMS equation at large Nc up to six loops.

We recall that the Eikonal amplitudes squared were computed at finite Nc in [93].

This chapter is organised as follows. In section 2 we define the observable and introduce

our notation. In section 3 we write down the BMS equation and propose its solution as an

exponential of a series in the strong coupling. We explicity treat each order in the exponent

up to sixth order in the coupling, hence we extract Eikonal squared amplitudes from the BMS

equation and compare with previous results in the literature, in section 4. In section 5 we

perform necessary integrations in order to obtain the coefficients of the NGLs in the exponent

up to five loops in the exponent. We show that the expansion of our result agrees with that

found in Refs. [93, 96]. We then show how the resummation of the terms in the exponent may

be achieved by considering only the resummation of the two-loops result. Finally, in section 6,

we draw our conclusions.

5.2 Kinematics, observable and notation

To illustrate the resummation of NGLs and extract Eikonal amplitudes from the BMS equation

we consider a simple observable, namely the hemisphere mass in dijet events in e+e− annihilation

processes, where the hard scattering is accompanied with strongly-ordered soft gluon emissions

ωn ≪ · · · ≪ ω2 ≪ ω1 ≪ Q, with Q the hard scale and ωi the energy of the ith emission. The

four-momenta of the outgoing quark (a), anti-quark (b) and gluons (i) are given by:

pa =
Q

2
(1, 0, 0, 1) , (5.1a)

pb =
Q

2
(1, 0, 0,−1) , (5.1b)

ki = ωi (1, sin θi cosφi, sin θi sin φi, cos θi) , (5.1c)

where recoil effects are negligible in the single-logarithmic approximation. Here θi and φi are

the polar and azimuthal angles of the ith emission.

To compare our findings of Eikonal amplitudes to those presented in Ref. [93] we follow the

same notation introduced therein. We define the antenna functions, which carry the dynamical
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structure of the squared matrix elements, as follows:

wi
ab = ω2

i

pa · pb
(pa · ki) (ki · pb)

, (5.2a)

Aij
ab = wi

ab

(
wj

ai + wj
ib − wj

ab

)
, (5.2b)

Bijk
ab = wi

ab

(
Ajk

ai +Ajk
ib −Ajk

ab

)
, (5.2c)

Cijkℓ
ab = wi

ab

(
Bjkℓ
ai + Bjkℓ

ib − Bjkℓ
ab

)
, (5.2d)

Dijkℓm
ab = wi

ab

(
Cjkℓm
ai + Cjkℓm

ib − Cjkℓm
ab

)
, (5.2e)

E ijkℓmn
ab = wi

ab

(
Djkℓmn

ai +Djkℓmn
ib −Djkℓmn

ab

)
. (5.2f)

Additionally we defined the reduced antenna functions Āij
ab = Aij

ab/w
i
ab, and similarly for the

other functions. The basic dipole antenna function wi
ab may be recast as:

wi
ab =

(ab)

(ai)(ib)
,

(ij) = 1− cos θij = 1− ci cj − si sj cosφij ,

(5.3)

where, for compactness, we have adopted the notation ci ≡ cos θi, si ≡ sin θi, and φij = φi−φj .

The observable we are interested in is the normalised (squared) invariant mass of the right

hemisphere HR (in the direction of the quark a):

ρ =

(
pa +

∑

i∈HR

ki

)2

/Q2

=
∑

i∈HR

2 ki · pa/Q2 =
∑

i∈HR

xi (1− cos θi) ,

(5.4)

where the sum runs over all gluon emissions inside the right hemisphere HR, and xi = ωi/Q is

the energy fraction of the ith emission.

5.3 The BMS equation and its solution

The hemisphere mass distribution is sensitive to soft and/or collinear gluon emissions leading

to large logarithms L = ln(1/ρ) in the integrated distribution σ(ρ) of this observable. At

leading order in color (also known as the large-Nc approximation), this distribution satisfies a

non-linear integro-differential equation known as the BMS equation [95]:

∂Gab(t)

∂t
= Nc

∫
dΩk

4π
wk

ab

(
Θout

k Gak(t)Gkb(t)− Gab(t)
)
, (5.5)
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where the hemisphere mass distribution is just σ(ρ) = Gab(t). The quantity Gab(t) is generally

interpreted as the probability that a given dipole (ab) whose directions are determined by solid

angles Ωa and Ωb emits radiation which contributes to the hemisphere mass with a value less

than ρ. We shall confine ourselves in the present work to the specific dipole (ab) = (qq̄) fixed

by ca = +1 and cb = −1, or equivalently θa = 0 and θb = π. The evolution parameter t is

related to ρ by:

t =
1

π

∫ 1

ρ

dx

x
αs(Qx) = − 1

2πβ0
ln (1− 2αsβ0L) , (5.6)

with β0 the one-loop coefficient of the QCD β function and the second equality holds at one-loop.

In Eq. (5.5) dΩk = dckdφk is the differential solid angle of the emission k, and the step function

Θout
k restricts this emission to be outside the measured hemisphere HR, thus Θout

k = Θ(−ck).
We additionally have Θin

k = 1 − Θout
k = Θ(ck). The solution to the BMS equation is unique

with the initial condition Gab(t = 0) = 1. Typical values of t for phenomenological studies are

in the range 0 ≤ t . 0.5.

The first term Θout
k Gak(t)Gkb(t) in Eq. (5.5) represents real emission contributions while the

subtracted term Gab(t) represents the virtual-corrections, and they are both (when integrated)

separately divergent when the emission is collinear to one of the hard dipoles. This collinear

singularity is cancelled in the sum of the two terms. To avoid these divergences we rewrite the

BMS equation in an alternative way: To avoid these divergences we rewrite the BMS equation

in an alternative way:

∂Gab(t)

∂t
= Nc

∫
dΩk

4π
wk

ab Θ
out
k (Gak(t)Gkb(t)− Gab(t))− Nc

∫
dΩk

4π
wk

ab Θ
in
k Gab(t) . (5.7)

Equation (5.7) as it stands is still ill-defined, since there is another collinear singularity in the

second term associated with emissions parallel to the quark (right-hemisphere) direction. This

issue was also raised in Ref. [99]. In fact, the BMS equation was originally written for away-from-

jets energy flow observables which are free from contributions of such emissions. Observables of

this kind are sensitive only to soft wide-angle emissions and thus only have single logarithms.

On the contrary, the hemisphere mass distribution has both single and double logarithms. This

explains the origin of the divergence in Eq. (5.7). In order for the BMS equation to be valid

in our case a kinematical cutoff needs to be applied to the second term in (5.7), namely a

collinear cutoff 1− ck > ρ. This cutoff naturally arises when using the “measurement operator"

procedure to account for real and virtual contributions to the hemisphere mass as explained in

Ref. [102].

This collinear singularity, however, only affects the resummation of double logarithms, which

typically results in a Sudakov form factor, and does not enter the resummation of non-global

logarithms. To see this, we recall that [94] non-global logarithms result from emissions near

the boundary between the two hemispheres which is away from both quark and anti-quark
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directions. Said differently, collinear emissions to the quark and anti-quark do not contribute to

non-global logarithms. Since we are interested only in the resummation of non-global logarithms

in this paper, and since the double logarithmic (Sudakov) form factor has been well treated

before (see Ref. [104] and the Review [105]), we can therefore discard this divergence in the

current paper.

5.3.1 Exponential solution

Based on the observation made in Ref. [102] about the possible exponentiation of NGLs, and

given that the derivative of the function Gab(t) in the BMS equation reproduces a phase-space

integral over somewhat the same function, it is natural to propose an exponential solution with

a series in the exponent of the form:

Gab(t) = exp

( ∞∑

n=1

1

n!
S(n)
ab Nn

c t
n

)
, (5.8)

where S(n)
ab are fixed coefficients. This proposed solution satisfies the boundary condition men-

tioned above at t = 0 and has the primary-emission Sudakov form factor (the term n = 1

in the exponent). This exponential form avoids the unnecessary dealing with “interference”

terms discussed in Ref. [102], which can be seen here by expanding the exponential. The BMS

equation does in fact admit this solution since, as we shall see, all the coefficients S(n)
ab in the

exponent are fully determined recursively down to the Sudakov term S(1)
ab , which too is fully

determined.

Although the BMS equation is valid only at leading colour, one can write the series in the

exponent in terms of the color factors CF = (N2
c − 1)/(2Nc) and CA = Nc by merely replacing

Nn

c → 2CF C
n−1
A , where at large Nc we have 2CF = CA = Nc. This fact helps us partially restore

the full color structure of the resummed non-global logarithms at finite Nc. Further finite-Nc

corrections totally not accounted for by the BMS equation, and which contribute a factor σcorr

(first appearing at O(α4
s)) to the fully resummed distribution, are also required, such that:

σfull Nc
(ρ) = σlargeNc

(ρ)× σcorr(ρ) , (5.9a)

σcorr(ρ) = 1 +O(α4
s) . (5.9b)

The first term in σcorr(ρ) was computed in Ref. [102] to be:

1

4!
ᾱ4
s L

4CF C
3
A

(
1

2
− CF

CA

)
ζ4 , (5.10)

with ᾱs = αs/π and ζ is the Riemann zeta function.
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5.3.2 Iteration of the series coefficients

We now show how the coefficients in the exponent of the exponential solution maybe found

iteratively. Taking the derivative of the solution (5.8) with respect to t and renaming the

summation index we obtain:

∂Gab(t)

∂t
=

( ∞∑

n=0

1

n!
S(n+1)
ab Nn+1

c tn

)
× Gab(t) , (5.11)

where we note that the sum here starts at n = 0. Substituting into the BMS equation and

dividing both sides by Nc Gab(t) we obtain:

∞∑

n=0

1

n!
S(n+1)
ab (Nc t)

n = −
∫

dΩk

4π
Θin

k w
k
ab +

∫
dΩk

4π
Θout

k ×

× wk
ab

(
exp

[ ∞∑

n=1

1

n!

(
S(n)
ak + S(n)

kb − S(n)
ab

)
(Nc t)

n

]
− 1

)
. (5.12)

In order to extract the coefficients S(n)
ab at any order n it suffices to equate coefficients of

(Nct)
n from both sides of this equation. At zeroth order (equating coefficients of (Nc t)

0) we

have:

S(1)
ab = −

∫
dΩ1

4π
Θin

1 w
1
ab , (5.13)

where we have set k = 1 to represent the first emission. This is the coefficient in the exponent

of the Sudakov form factor. As stated earlier, this term is divergent and can be regulated by

placing a collinear cutoff on the polar integration. However, this divergence is irrelevant for the

calculation of NGLs and thus will not be considered further.

At higher loops we may write:

∞∑

n=1

1

n!
S(n+1)
ab (Nc t)

n =

∫
dΩ1

4π
Θout

1 w1
ab×

×
(
exp

[ ∞∑

n=1

1

n!

(
S(n)
a1 + S(n)

1b − S(n)
ab

)
(Nc t)

n

]
− 1

)
. (5.14)
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Denoting Xn = S(n)
a1 + S(n)

1b − S(n)
ab , and using the fact that:

exp

( ∞∑

n=1

(Nc t)
n

n!
Xn

)
− 1 =

(Nc t)
1

1!
X1+

+
(Nc t)

2

2!

(
X 2

1 + X2

)
+

(Nc t)
3

3!

(
X 3

1 + 3X1X2 + X3

)
+

+
(Nc t)

4

4!

(
X 4

1 + 6X 2
1 X2 + 3X 2

2 + 4X1X3 + X4

)
+

+
(Nc t)

5

5!

(
X 5

1 + 10X 3
1 X2 + 15X1X 2

2 + 10X 2
1 X3+

+10X2X3 + 5X1X4 + X5) +

+
(Nc t)

6

6!

(
X 6

1 + 15X 4
1 X2 + 45X 2

1 X 2
2 + 15X 3

2 + 20X 3
1 X3+

+60X1X2X3 + 10X 2
3 + 15X 2

1 X4 + 15X2X4+

+6X1X5 + X6) +O(t7)

≡
∞∑

n=1

1

n!
F (n)

ab (k1) (Nc t)
n , (5.15)

we are able to compute all the coefficients S(n)
ab recursively:

S(n+1)
ab =

∫
dΩ1

4π
Θout

1 w1
ab F

(n)
ab (k1) , n ≥ 1 , (5.16)

where we note that all F (n)
ab (k1) are written as combinations of the functions χm with m ≤ n.

This means that the (n + 1)th-order coefficient S(n+1)
ab is written in terms of lower-order terms

recursively. In what follows bellow we illustrate the evaluation of these coefficients up to sixth

order. Going to higher orders is in principle possible though cumbersome.

5.3.3 Results up to six loops

The leading order at which NGLs first appear is the two-loops order, that is O(α2
s). At this

order we have:

S(2)
ab =

∫
dΩ1

4π
Θout

1 w1
ab F

(1)
ab (k1)

=

∫
dΩ1

4π
Θout

1 w1
ab X1

=

∫
dΩ1

4π
Θout

1 w1
ab

(
S(1)
a1 + S(1)

1b − S(1)
ab

)

= −
∫

dΩ1

4π

dΩ2

4π
Θout

1 Θin
2 w

1
ab

(
w2

a1 + w2
1b − w2

ab

)

= −
∫

dΩ12

(4π)2
Θout

1 Θin
2 A12

ab , (5.17)



5.3 The BMS equation and its solution 74

where we substituted the expressions for S(1)
ij from the relation (5.13), and used the shorthand

notation dΩ12...m ≡ dΩ1dΩ2 . . .dΩm.

At three loops we find:

S(3)
ab =

∫
dΩ1

4π
Θout

1 w1
ab ×

[(
S(1)
a1 + S(1)

1b − S(1)
ab

)2
+ S(2)

a1 + S(2)
1b − S(2)

ab

]

=

∫
dΩ123

(4π)3
Θout

1 Θin
2 Θin

3 A12
ab Ā13

ab −
∫

dΩ123

(4π)3
Θout

1 Θout
2 Θin

3 B123
ab . (5.18)

Similarly, at four loops we have the result:

S(4)
ab =

∫
dΩ1

4π
Θout

1 w1
ab

[(
S(1)
a1 + S(1)

1b − S(1)
ab

)3
+

+ 3
(
S(1)
a1 + S(1)

1b − S(1)
ab

)(
S(2)
a1 + S(2)

1b − S(2)
ab

)
+ S(3)

a1 + S(3)
1b − S(3)

ab

]

=−
∫

dΩ1234

(4π)4
Θout

1 Θin
2 Θin

3 Θin
4 A12

ab Ā13
ab Ā14

ab+

+ 3

∫
dΩ1234

(4π)4
Θout

1 Θin
2 Θout

3 Θin
4 A12

ab B̄134
ab +

+

∫
dΩ1234

(4π)4
Θout

1 Θout
2 Θin

3 Θin
4 A

1234
ab −

−
∫

dΩ1234

(4π)4
Θout

1 Θout
2 Θout

3 Θin
4 C1234

ab . (5.19)

where, inline with the notation used in Ref. [93], we introduced:

A
ijkℓ
ab = wi

ab

(
Ajk

ai Ājℓ
ai +Ajk

ib Ā
jℓ
ib −Ajk

abĀ
jℓ
ab

)
. (5.20)

Furthermore, to present the five-loops coefficient, we introduce, as in Ref. [93]:

A
ijkℓm
ab = wi

ab

(
Ajk

ai Ājℓ
aiĀjm

ai +Ajk
ib Ā

jℓ
ibĀ

jm
ib −Ajk

abĀ
jℓ
abĀ

jm
ab

)
, (5.21a)

Ã
ijkℓm
ab = wi

ab

(
Ajk

ai B̄jℓm
ai +Ajk

ib B̄
jℓm
ib −Ajk

abB̄
jℓm
ab

)
, (5.21b)

B
ijkℓm
ab = wi

ab

(
A

jkℓm
ai + A

jkℓm
ib − A

jkℓm
ab

)
. (5.21c)

Then, the five-loops coefficient reads:

S(5)
ab =

∫
dΩ1

4π
w1

ab Θ
out
1

[(
S(1)
a1 + S(1)

1b − S(1)
ab

)4
+

+ 6
(
S(1)
a1 + S(1)

1b − S(1)
ab

)2 (
S(2)
a1 + S(2)

1b − S(2)
ab

)
+

+ 4
(
S(1)
a1 + S(1)

1b − S(1)
ab

)(
S(3)
a1 + S(3)

1b − S(3)
ab

)
+

+ 3
(
S(2)
a1 + S(2)

1b − S(2)
ab

)2
+ S(4)

a1 + S(4)
1b − S(4)

ab

]
. (5.22)
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Substituting in terms of the antennas functions we find at this order:

S(5)
ab =

∫
dΩ12345

(4π)5
Θout

1 Θin
2 Θin

3 Θin
4 Θin

5 A12
ab Ā13

ab Ā14
ab Ā15

ab−

− 6

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θin

3 Θin
4 Θin

5 B123
ab Ā14

ab Ā15
ab+

+ 3

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θin

3 Θout
4 Θin

5 B123
ab B̄145

ab −

− 4

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θin

3 Θin
4 Θin

5 A15
ab Ā

1234
ab +

+ 4

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θout

3 Θin
4 Θin

5 A15
ab C̄1234

ab −

−
∫

dΩ12345

(4π)5
Θout

1 Θout
2 Θin

3 Θin
4 Θin

5 A
12345
ab +

+ 3

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θin

3 Θout
4 Θin

5 Ã
12345
ab +

+

∫
dΩ12345

(4π)5
Θout

1 Θout
2 Θout

3 Θin
4 Θin

5 B
12345
ab −

−
∫

dΩ12345

(4π)5
Θout

1 Θout
2 Θout

3 Θout
4 Θin

5 D12345
ab . (5.23)

For the presentation of the six-loops result we shall need the following definitions:

B
ijkℓmn
ab = wi

ab

(
A
jkℓmn
ai + A

jkℓmn
ib − A

jkℓmn
ab

)
, (5.24a)

B̃
ijkℓmn
ab = wi

ab

(
Ã

jkℓmn
ai + Ã

jkℓmn
ib − Ã

jkℓmn
ab

)
, (5.24b)

C
ijkℓmn
ab = wi

ab

(
B

jkℓmn
ai +B

jkℓmn
ib − B̃

jkℓmn
ab

)
. (5.24c)

At this order we have:

S(6)
ab =

∫
dΩ1

4π
w1

ab Θ
out
1

[(
S(1)
a1 + S(1)

1b − S(1)
ab

)5
+

+ 10
(
S(1)
a1 + S(1)

1b − S(1)
ab

)3 (
S(2)
a1 + S(2)

1b − S(2)
ab

)
+

+ 15
(
S(1)
a1 + S(1)

1b − S(1)
ab

)(
S(2)
a1 + S(2)

1b − S(2)
ab

)2
+

+ 10
(
S(1)
a1 + S(1)

1b − S(1)
ab

)2 (
S(3)
a1 + S(3)

1b − S(3)
ab

)
+

+ 10
(
S(2)
a1 + S(2)

1b − S(2)
ab

)(
S(3)
a1 + S(3)

1b − S(3)
ab

)
+

+ 5
(
S(1)
a1 + S(1)

1b − S(1)
ab

)(
S(4)
a1 + S(4)

1b − S(4)
ab

)
+

+ S(5)
a1 + S(5)

1b − S(5)
ab

]
. (5.25)



5.3 The BMS equation and its solution 76

Explicitly written we have:

S(6)
ab =−

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θout
4 Θout

5 Θin
6 E123456

ab

−
∫

dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

in
3 Θ

in
4 Θ

in
5 Θ

in
6 A12

abĀ13
abĀ14

abĀ15
abĀ16

ab

+ 10

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

in
3 Θ

in
4 Θ

out
5 Θin

6 A12
abĀ13

abĀ14
abB̄156

ab

− 15

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

out
3 Θin

4 Θ
out
5 Θin

6 A12
abB̄134

ab B̄156
ab

− 10

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

in
3 Θ

out
4 Θout

5 Θin
6 A12

abĀ13
abC̄1456

ab

+ 10

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θin

3 Θ
out
4 Θout

5 Θin
6 B123

ab C̄1456
ab

+ 10

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

in
3 Θ

out
4 Θin

5 Θ
in
6 A12

abĀ13
abĀ

1456
ab

− 10

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θin

3 Θ
out
4 Θin

5 Θ
in
6 B123

ab Ā
1456
ab

+ 5

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

out
3 Θin

4 Θ
in
5 Θ

in
6 A12

abĀ
13456
ab

− 15

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

out
3 Θin

4 Θ
out
5 Θin

6 A12
ab
¯̃
A

13456
ab

− 5

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

out
3 Θout

4 Θin
5 Θ

in
6 A12

abB̄
13456
ab

+ 5

∫
dΩ1...6

(4π)6
Θout

1 Θin
2 Θ

out
3 Θout

4 Θout
5 Θin

6 A12
abD̄13456

ab +

+

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θin

3 Θ
in
4 Θ

in
5 Θ

in
6 J 123456

ab

− 6

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θin
4 Θ

in
5 Θ

in
6 K123456

ab

+ 3

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θin
4 Θ

out
5 Θin

6 L123456
ab

+ 4

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θout
4 Θin

5 Θ
in
6 P123456

ab

− 4

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θin
4 Θ

in
5 Θ

in
6 Q123456

ab

−
∫

dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θin
4 Θ

in
5 Θ

in
6 B

123456
ab

+ 3

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θin
4 Θ

out
5 Θin

6 B̃
123456
ab

+

∫
dΩ1...6

(4π)6
Θout

1 Θout
2 Θout

3 Θout
4 Θin

5 Θ
in
6 C

123456
ab , (5.26)

where

J ijkℓmn
ab = wi

ab

(
Ajk

ai Ājℓ
aiĀjm

ai Ājn
ai +Ajk

ib Ā
jℓ
ibĀ

jm
ib Ājn

ib −Ajk
abĀ

jℓ
abĀ

jm
ab Ā

jn
ab

)
, (5.27a)
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Kijkℓmn
ab = wi

ab

(
Bjkℓ
ai Ājm

ai Ājn
ai + Bjkℓ

ib Ājm
ib Ājn

ib − Bjkℓ
ab Ājm

ab Ā
jn
ab

)
, (5.27b)

Lijkℓmn
ab = wi

ab

(
Bjkℓ
ai B̄jmn

ai + Bjkℓ
ib B̄jmn

ib − Bjkℓ
ab B̄

jmn
ab

)
, (5.27c)

P ijkℓmn
ab = wi

ab

(
Ajn

ai C̄jkℓm
ai +Ajn

ib C̄
jkℓm
ib −Ajn

ab C̄
jkℓm
ab

)
, (5.27d)

Qijkℓmn
ab = wi

ab

(
Ajn

ai Ā
jkℓm
ai +Ajn

ib Ā
jkℓm
ib −Ajn

ab Ā
jkℓm
ab

)
. (5.27e)

At this point we emphasise that the unintegrated results S(n)
ab that we have presented are

in fact very general and applicable to the computation of the distribution of any non-global

observable, at large Nc. The evaluation of these integrals for the specific case of the hemisphere

mass distribution will be presented in section 5. Before doing so, we show, in the next section,

how Eikonal amplitudes squared for the emission of soft energy-ordered gluons up to six-loops

at large Nc maybe extracted from the above expressions for S(n)
ab .

5.4 Eikonal amplitudes from the BMS equation

The integrals involved in the evaluation of each of the coefficients S(n)
ab correctly reproduce the

squared Eikonal amplitudes for the emission of n soft energy-ordered gluons. The phase space of

these integrals encodes the impact of the “measurement operator”, introduced in Ref. [96], on the

various squared amplitudes corresponding to all possible real/virtual gluon configurations at a

given order n, in addition to the possible angular configurations (inside or outside the measured

region). Furthermore, the constant integers that appear in front of the integrals merely result

from identical contributions of different permutations of the emitted gluons. Take, for instance,

the four-loops term from Eq. (5.18):

3

∫
dΩ1234

(4π)4
Θout

1 Θin
2 Θout

3 Θin
4 A12

ab B̄134
ab . (5.28)

This term can be rewritten as:

∫
dΩ1234

(4π)4

[
Θout

1 Θin
2 Θout

3 Θin
4 A12

ab B̄134
ab +Θout

1 Θout
2 Θin

3 Θin
4 A13

ab B̄124
ab +

+Θout
1 Θout

2 Θin
3 Θin

4 A14
ab B̄123

ab

]
. (5.29)

These three terms actually give identical results after integration, but each of them originates

from a different term in the amplitude squared that comes from one of the permutations of the

emitted gluons. The color factor associated with the amplitudes that we extract at nth order

is, at large Nc, Nn

c . As stated before, we invoke the replacement Nn

c → 2CFC
n−1
A in order to

partially restore the full Nc color structure of the squared amplitudes.

It should be emphasised, though, that the results presented in the previous section explicitly
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reproduce just what was referred to in Ref. [93] as the “irreducible” parts of the squared ampli-

tudes at a given order. The “reducible” parts of the squared Eikonal amplitudes are related to

the interference terms that one obtains by expanding the proposed exponential solution (5.8).

The reducible parts of the squared amplitudes at order n are written purely in terms of squared

amplitudes at previous orders m < n. Extracting these amplitudes is trivial and we shall show

the results below.

In remaining part of this section we present the emission squared amplitudes deduced from

the exponential solution of the BMS equation up to six loops. We follow the notation of

Ref. [93], where WX

12...m represents the m-gluon emission amplitude squared with real-virtual

configurations denoted by X. For instance, WRVR

123 is the squared amplitude of emission of 3

gluons with k1 and k3 being real and k2 being virtual. We shall only present the real emission

amplitudes. The virtual corrections may readily be deduced from the latter as explained in

Ref. [93].

The squared amplitude for the emission of a single soft gluon (n = 1) off a dipole (ab) is

read from the expression of S(1)
ab (5.13) to be:

WR

1 = 2CFw
1
ab . (5.30)

At two loops, the emission squared amplitude is given by:

WRR

12 = WR

1 WR

2 +WRR

12 , (5.31)

where the irreducible two-loops part is read from S(2)
ab (last line of Eq. (5.17)) to be:

WRR

12 = 2CF CA A12
ab . (5.32)

At three loops we have:

WRR

123 = WR

1 WR

2 WR

3 +WR

1 W
RR

23 +WR

2W
RR

13 +WR

3 W
RR

12 +WRRR

123 , (5.33)

with the totally irreducible component (read from Eq. (5.18)):

WRRR

123 = 2CFC
2
A

(
A12

ab Ā13
ab + B123

ab

)
. (5.34)

We note here that the minus sign associated with the term B123
ab in (5.18), as well as the

different phase space of integration in the two terms of this equation, results from consideration

of virtual contributions. This is clearly explained in Ref. [102]. For instance, the contribution

Θout
1 Θin

2 Θin
3 A12

ab Ā13
ab is associated with the irreducible part of the squared amplitude of emission
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WRVR

123 with gluon k2 being virtual:

WRVR

123 = −2CFC
2
AA12

abĀ13
ab , (5.35)

while the contribution Θout
1 Θout

2 Θin
3 B123

ab is associated with the contribution of the sum of the

two terms WRVR

123 +WRRR

123 , as explained in Ref. [102].

The four loops emission squared amplitude is given by:

WRRRR

1234 = WR

1 WR

2 WR

3 WR

4 +
(
WR

1 WR

2W
RR

34 + perm.
)
+
(
WRR

12 W
RR

34 + perm.
)

+
(
WR

1W
RRR

234 + perm.
)
+WRRRR

1234 + finite-Nc contributions , (5.36)

where “perm.” stands for all possible permutations of the gluons that do not reproduce the same

term twice (in order to avoid double counting). The irreducible part of the squared amplitude

at this order is read from Eq. (5.19) to be:

WRRRR

1234 = 2CFC
3
A

(
A12

abĀ13
abĀ14

ab + A
1234
ab + C1234

ab +A12
abB̄134

ab +A13
abB̄124

ab +A14
abB̄123

ab

)
. (5.37)

The five loops emission squared amplitude is given by:

WRRRRR

12345 = WR

1 WR

2WR

3 WR

4 WR

5 +
(
WR

1 WR

2 WR

3 W
RR

45 + perm.
)
+

+
(
WR

1W
RR

23 W
RR

45 + permu.
)
+
(
WR

1 WR

2 W
RRR

345 + perm.
)
+

+
(
WRR

12 W
RRR

345 + perm.
)
+
(
WR

1 W
RRRR

2345 + perm.
)
+

+WRRRRR

12345 + finite-Nc contributions . (5.38)

The irreducible contribution can be read from Eq. (5.23):

WRRRRR

12345 =2CFC
4
A

(
D12345

ab +A12
ab Ā13

ab Ā14
ab Ā15

ab + B123
ab Ā14

ab Ā15
ab + B124

ab Ā13
ab Ā15

ab+

+ B125
ab Ā13

ab Ā14
ab + B134

ab Ā12
ab Ā15

ab + B135
ab Ā12

ab Ā14
ab + B145

ab Ā12
ab Ā13

ab+

+ B123
ab B̄145

ab + B124
ab B̄135

ab + B125
ab B̄134

ab +A15
ab Ā

1234
ab +A14

ab Ā
1235
ab +

+A13
ab Ā

1245
ab +A12

ab Ā
1345
ab +A15

ab C̄1234
ab +A14

ab C̄1235
ab +A13

ab C̄1245
ab +

+A12
ab C̄1345

ab + Ã
12345
ab + Ã

12435
ab + Ã

12534
ab + A

12345
ab +B

12345
ab

)
. (5.39)
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At six loops we have

WRRRRRR

123456 =WR

1 WR

2WR

3 WR

4 WR

5 WR

6 +
(
WR

1 WR

2 WR

3WR

4 W
RR

56 + perm.
)
+

+
(
WR

1WR

2 W
RR

34 W
RR

56 + perm.
)
+
(
WRR

12 W
RR

34 W
RR

56 + perm.
)
+

+
(
WR

1WR

2 WR

3 W
RRR

456 + perm.
)
+
(
WR

1 W
RR

23 W
RRR

456 + perm.
)
+

+
(
WRRR

123 W
RRR

456 + perm.
)
+
(
WRR

12 W
RRRR

3456 + perm.
)
+

+
(
WR

1WR

2 W
RRRR

3456 + perm.
)
+
(
WR

1W
RRRRR

23456 + perm.
)
+

+WRRRRRR

123456 + finite-Nc contributions , (5.40)

where the irreducible contribution at this order is deduced from Eq. (5.26) to be:

WRRRRR

123456 = A12
abĀ13

abĀ14
abĀ15

abĀ16
ab+

+A12
abĀ13

abĀ14
abB̄156

ab +A12
abĀ13

abĀ15
abB̄146

ab +A12
abĀ13

abĀ16
abB̄145

ab +A12
abĀ14

abĀ15
abB̄136

ab +

+A12
abĀ14

abĀ16
abB̄135

ab +A12
abĀ15

abĀ16
abB̄134

ab +A13
abĀ14

abĀ15
abB̄126

ab +A13
abĀ14

abĀ16
abB̄125

ab +

+A13
abĀ15

abĀ16
abB̄124

ab +A14
abĀ15

abĀ16
abB̄123

ab +

+A12
abB̄134

ab B̄156
ab +A12

abB̄135
ab B̄146

ab +A12
abB̄136

ab B̄145
ab +A13

abB̄124
ab B̄156

ab +A13
abB̄125

ab B̄146
ab +

+A13
abB̄126

ab B̄145
ab +A14

abB̄123
ab B̄156

ab +A14
abB̄125

ab B̄136
ab +A14

abB̄126
ab B̄135

ab +A15
abB̄123

ab B̄146
ab +

+A15
abB̄124

ab B̄136
ab +A15

abB̄126
ab B̄134

ab +A16
abB̄123

ab B̄145
ab +A16

abB̄124
ab B̄135

ab +A16
abB̄125

ab B̄134
ab +

+A12
abĀ13

abC̄1456
ab +A12

abĀ14
abC̄1356

ab +A12
abĀ15

abC̄1346
ab +A12

abĀ16
abC̄1345

ab +A13
abĀ14

abC̄1256
ab +

+A13
abĀ15

abC̄1246
ab +A13

abĀ16
abC̄1245

ab +A14
abĀ15

abC̄1236
ab +A14

abĀ16
abC̄1235

ab +A15
abĀ16

abC̄1234
ab +

+ B123
ab C̄1456

ab + B124
ab C̄1356

ab + B125
ab C̄1346

ab + B126
ab C̄1345

ab + B134
ab C̄1256

ab + B135
ab C̄1246

ab +

+ B136
ab C̄1245

ab + B145
ab C̄1236

ab + B146
ab C̄1235

ab + B156
ab C̄1234

ab +

+A12
abĀ13

abĀ
1456
ab +A12

abĀ14
abĀ

1356
ab +A12

abĀ15
abĀ

1346
ab +A12

abĀ16
abĀ

1345
ab +

+A13
abĀ14

abĀ
1256
ab +A13

abĀ15
abĀ

1246
ab +A13

abĀ16
abĀ

1245
ab +A14

abĀ15
abĀ

1236
ab +A14

abĀ16
abĀ

1235
ab +

+A15
abĀ16

abĀ
1234
ab +

+ B123
ab Ā

1456
ab + B124

ab Ā
1356
ab + B125

ab Ā
1346
ab + B126

ab Ā
1345
ab + B134

ab Ā
1256
ab + B135

ab Ā
1246
ab +

+ B136
ab Ā

1245
ab + B145

ab Ā
1236
ab + B146

ab Ā
1235
ab + B156

ab Ā
1234
ab +

+A12
abĀ

13456
ab +A13

abĀ
12456
ab +A14

abĀ
12356
ab +A15

abĀ
12346
ab +A16

abĀ
12345
ab +

+A12
ab
¯̃
A

13456
ab +A12

ab
¯̃
A

13546
ab +A12

ab
¯̃
A

13645
ab +A13

ab
¯̃
A

12456
ab +A13

ab
¯̃
A

12546
ab +A13

ab
¯̃
A

12645
ab +

+A14
ab
¯̃
A

12356
ab +A14

ab
¯̃
A

12536
ab +A14

ab
¯̃
A

12635
ab +A15

ab
¯̃
A

12346
ab +A15

ab
¯̃
A

12436
ab +A15

ab
¯̃
A

12634
ab +

+A16
ab
¯̃
A

12345
ab +A16

ab
¯̃
A

12435
ab +A16

ab
¯̃
A

12534
ab +

+A12
abB̄

13456
ab +A13

abB̄
12456
ab +A14

abB̄
12356
ab +A15

abB̄
12346
ab +A16

abB̄
12345
ab +

+A12
abD̄13456

ab +A13
abD̄12456

ab +A14
abD̄12356

ab +A15
abD̄12346

ab +A16
abD̄12345

ab + (5.41)
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+K123456
ab +K123546

ab +K123645
ab +K124536

ab +K124635
ab +K125634

ab + L123456
ab +

+ L123546
ab + L123645

ab + P123456
ab + P123465

ab + P123564
ab + P124563

ab +Q123456
ab +

+Q123465
ab +Q123564

ab +Q124563
ab + B̃

123456
ab + B̃

123546
ab + B̃

123645
ab + J 123456

ab +

+ B
123456
ab + C

123456
ab + E123456

ab . (5.42)

Notice how the integer coefficient that multiplies each integral in Eq. (5.26) exactly corre-

sponds to the number of possible iterations of gluons in the squared amplitude. The result at

six loops has not been previously reported in the literature and we have deduced it here from

the BMS equation. Furthermore, we have verified this result by comparing it to the output

of the Mathematica Program EikAmp [93]. Recall that EikAmp additionally produces contri-

butions that are subleading in colour, i.e., finite-Nc contributions, and thus provides squared

amplitudes that are more accurate in terms of the colour structure.

5.5 NGLs in the hemisphere mass distribution

We present in this section the results of integrations for the coefficients S(n)
ab of NGLs up to

n = 5, in the case of back-to-back di-jet production events in e+e− collisions, where we measure

the invariant mass of the hemisphere defined by one of the jets. The iterative structure of

the integrals suggests the use of Goncharov polylogarithms (GPLs), symbols and co-product

machinery [86] which greatly simplifies the analytical computations of the said integrations [96].

This results we report herein serve as confirmation of the semi-analytical calculations carried

out in Ref. [102]. We leave the details of the integrations to appendix B and confine ourselves

here to only state the full result up to fifth order.

The resummed hemisphere mass distribution may be expressed as follows:

σ(ρ) = σp(ρ) × σNG(ρ) , (5.43)

where σp(ρ) is the primary Sudakov form factor given by [106]:

σp(ρ) =
1

Γ[1 +R′(ρ)]
exp [−R(ρ)− γE R′(ρ)] , (5.44)

The term σNG(ρ) is the resummed non-global factor given by:

σNG(t) = exp

(
−(Nct)

2

2!

ζ2
2
+

(Nct)
3

3!

ζ3
2
− (Nct)

4

4!

29 ζ4
16

+

+
(Nct)

5

5!

[
17

4
ζ5 +

1

2
ζ2ζ3

]
+O(t6)

)
, (5.45)

where the five-loops result has been deduced from previous results in the literature [96, 102].
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The fixed-order expansion of this result gives

σ(ρ)NG = 1− π2

24
(Nct)

2 +
ζ3
12

(Nct)
3 +

π4

34 560
(Nct)

4+

+

(
− 1

360
π2ζ3 +

17

480
ζ5

)
(Nct)

5, (5.46)

which confirms the results obtained in Refs. [96, 102].

Since we have not computed higher NGLs coefficients, we can make a crude estimate of

how large they may be. We do so by fitting the exponential solution (5.8) truncated at seventh

order to the full numerical resummation of NGLs obtained by the evolution code of Ref. [52].

The fitting values that we have obtained are:

S(6)
ab =− 13.34 , (5.47a)

S(7)
ab =+ 15.03 . (5.47b)

The numerical values for the coefficients that multiply (Nct)
n in (5.45) up to fifth order (n=5)

are shown in Table 5.1. Also shown in the same table are the estimated coefficients at 6 and

7 loops based on the fitting values above (5.47). We note that for typical phenomenological

studies Nct . 1. Combined with the observations that the numerical values for the coefficients

shown in Table 5.1 become smaller at each higher order, it is expected that the series in the

exponent (5.45) should converge fairly quickly.

Order Coefficient
2 −0.411
3 +0.100
4 −0.082
5 +0.045
6 −0.018
7 +0.003

Table 5.1: Coefficients multiplying Nct at order n.

In the next subsection, we discuss the resummation of the pure ladder terms to all orders.

5.5.1 Two-loops ladder resummation

In this section we show how a class of terms that appear at each order in the perturbative

expansion of NGLs distribution may be resummed in the exponent (5.8) to all orders. Such a

class of terms, dubbed “ladder” terms 1 [102], seems to exhibit a symmetry pattern and starts

1The Feynman diagrams corresponding to these terms look like a ladder. See Fig. 5.1.
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Figure 5.1: Diagrammatic representation of the ladder terms up to fifth order.

at two-loops by the expression (5.17):

S(2)
ab = −

∫
dΩ12

(4π)2
Θout

1 Θin
2 A12

ab . (5.48)

At higher orders (n ≥ 2) they appear as:

(−1)n−1

∫
dΩ12...n

(4π)n
Θout

1 ω1
ab

n∏

i=2

Θin
i Ā1i

ab . (5.49)

They may be depicted by the Feynman diagrams shown in Fig. 5.1. The result of integration

of a given ladder term at order n is given by the formula:

(−1)n−1 (n− 1)!ζn/2 , n ≥ 2 , (5.50)

Summing these terms to all orders in the exponent yields the result:

exp

[ ∞∑

n=2

(−1)n−1 (n− 1)!

2
ζn

(Nct)
n

n!

]

=
1√

Γ(Nct+ 1)
exp

[
−γE

2
Nc t

]
. (5.51)

An analogous result to the above was derived in Ref. [96] by means of solving the BMS equation

up to two loops while ignoring higher-loop terms. Eq. (5.51) also corresponds to the first

radiator R(1)
ab (t) in Eq. (5.3) of Ref. [95] 2. This means that the exponential solution (5.8) may

be factored out into a product of infinite exponential terms (or equivalently a sum of infinite

terms in the exponent), each of which resums a specific class of terms that exhibit a given

symmetry pattern. What we have computed above, i.e., ladder terms, is just the first obvious

class of such terms. Possibility of computing the other less trivial classes will be postponed for

future publications.

We show in figure 5.2 a plot of the ratio σNG/σDS, where σDS is a parametrisation function

that was obtained in Ref. [52] by fitting to the output of a Monte Carlo dipole evolution code

2Notice that the evolution parameter t is denoted as δ in [95].
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Figure 5.2: Plots of the ratios σNG/σDS as a function of t including terms in (5.8) up to 2 loops,
up to 5 loops in the exponent, and ladder terms resummed factor (5.51).

developed therein to resum NGLs at large Nc. It is given by:

σDS(t) = exp

[
−CF CA

π2

12

1 + (0.85CA t/2)
2

1 + (0.86CA t/2)1.33

]
. (5.52)

We show in figure 5.2 three cases for σNG. In one case we truncate the series in the exponent

(5.45) at two loops keeping only the leading term in the exponent. We notice that the expo-

nential result differs only at the level of a maximum of 3% for values of t up to 0.3. In the

second case we truncate the series in the exponent at fifth order. Here we see that the 5-loops

resummed result performs better than the two-loops result with discrepancy less than 1% for

values of t up to ∼ 0.3 (which is equivalent to a value of L = ln(1/ρ) = 5.3 or ρ = 0.005). This

indicates that adding a few more terms in the exponent one should be able to obtain a reliably

good agreement with the full numerical resummation of NGLs σDS.

The resummed factor for the ladder terms (blue curve), on the other hand, does not seem

to perform any better than the two-loops case (green dotted curve). This indicates that the

formula we proposed in Eq. (5.8) is equivalent to that proposed in Ref. [95] (Eq. (5.3)) in the

sense that in both cases it is necessary to compute higher-loop terms/classes in order to get a

reliable analytical result that matches the full numerical one.

5.6 Summary

In the current work we have shown how to extract the Eikonal squared amplitudes for the

emission of soft energy-ordered gluons at large Nc from the non-linear integro-differential BMS

equation. The explicit formulae for these amplitudes have been given up to the sixth order in

the strong coupling. The latter have actually been deduced from the explicit formulae of the

coefficients of NGLs distribution S(n)
ab , for which the BMS equation was initially developed. The

expressions of S(n)
ab are general and may be applied to the computation of any non-global QCD

observable. All that is needed is a simple change of the limits of the phase space integrals.
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Moreover, we have explicitly verified that the squared amplitudes extracted from the BMS

equation coincide with those presented in our previous work [93] in the large Nc limit. The

results of the latter reference were obtained by means of a Mathematica code that implements

the dipole formula in the Eikonal approximation and captures the full colour dependence of the

amplitudes.

We additionally carried out analytical evaluations of the various integrals corresponding to

the NGLs coefficients S(n)
ab up to fourth order for the specific case of hemisphere jet mass. We

have thus confirmed the semi-numerical calculations presented previously in [102]. The fifth

and sixth order computations are quite delicate and will be presented in future publications.

Furthermore, we compared our results to the full numerical resummation of Ref. [52] and

found that the more higher terms in the exponent of the proposed solution (5.8) the better the

agreement is for larger intervals of the evolution parameter t. Nonetheless, and as previously

pointed out in the literature, the exponential of the two-loops result gives a good approximation

for the full resummation for values of t up to ∼ 0.3.

We have also elaborated on the observation that the solution of the BMS equation may be

represented by a product of infinite exponential factors each of which resums a class of terms

contributing to the NGLs distribution. We have computed the first of such resummed factors,

which corresponds to a class of terms whose Feynman diagrams resemble a ladder shape. It

turns out, however, that such a solution does not differ much than the solution we proposed in

(5.8) in view of the fact that higher-loop terms cannot be neglected and should be computed

for a precise and reliable solution to the BMS equation.



Chapter 6

Conclusions

As stated in this thesis, jets are ubiquitous in collider phenomenology and with the larger

data set that will be generated by Run 3 of the LHC and the future e+e− colliders (FCC-ee

and ILC), jet substructure tools are crucial in particle physics. An important application of

jet substructure in jet physics is in the description of QCD background and searches for new

particles decaying hadronically. In particular, in this thesis we focused on the study of event

and jet shapes distributions that can provide information about the internal structure of the

QCD jets (background), possibly enabling for the differentiation of the jet’s partonic origin,

using the traditional perturbative QCD approach.

In chapter 4 of this thesis, we studied the jet shape distribution, azimuthal decorrelation for

high-pt QCD di-jet production in e+e− annihilation. We examined non-global and clustering

logarithms in the distribution of the aforementioned observable and we presented analytical

calculations both at fixed-order up to four loops and numerically resummed them to all orders

in the large-Nc approximation. We discovered that at small R the coefficients are identical

to those in the single hemisphere jet mass observable. In light of the fact that experimental

jet measurements usually use large values of the jet parameter R, we also computed the full

logarithmic structure of the said shape distribution in the full R limit for both the anti-kt and

kt algorithms up to three loops. The NGLs significance reduction associated with kt clustering

was confirmed in this study. It was further observed that NGLs and CLs together have a very

small effect on the distribution and the accuracy of the resummed distribution is therefore

important from a phenomenological standpoint. The difference between the numerical and

analytical differential distributions at O(αs) and O(α2
s) indicating that singular terms have

been eliminated completely. As a final step, we calculated the resummed distribution at NLL

accuracy using the program Gnole, thereby obtaining state-of-the-art accuracy. Based on scale

uncertainty and accuracy, NLL resummation shows a better distribution and so it would be

interesting to investigate the impact of NLL effects with kt clustering in a future work. Of similar

worthiness is computing NGLs and CLs at four-loops with full R dependence. Furthermore, we
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will also adress non-perturbative corrections, fixed-order matching, statistical and systematic

uncertainties.

In chapter 5 of this thesis we addressed the BMS equation describing the evolution of the

leading NGLs at large Nc at single logarithmic accuracy up to four loops for the hemisphere

mass distribution in e+e− → di-jet events. We proposed an exponential solution arrived at

in Ref [102], which was, however, extended herein to resum both the Sudakov and NGLs at

large Nc. This latter being a series in the strong coupling αs. We substituted the proposed

solution into the BMS equation and we obtained recurrence relations make the computation

of the NGLs coefficient possible. We additionally showed that the squared amplitudes for the

emission of soft energy-ordered gluons are correctly embedded in the explicit formulae of the

coefficients of NGLs distribution Sn
ab, and explicitly verify that they coincide with those derived

in previous works in the literature in the large-Nc limit up to sixth order in the strong coupling.

Furthermore, we were able to analytically compute the leading NGLs coefficients up to four

loops. Whereas our calculation is full up to four loops, the difficulties encountered in some

integrals which are far from simple to integrate make it incomplete at five and higher loops.

Furthermore, for the pure ladder terms, we could investigate what happens at higher loops and

identify a pattern and resum theme to all orders to the best possible accuracy.

The current work may be extended in various ways. These include, to name few, (a)

analytically computing the fifth and sixth order NGLs coefficients, (b) considering other non-

global jet shape distributions up to sixth order, (c) exploring the effect of jet algorithms and

jet radii on NGLs distributions up to sixth order, and (d) exploiting new developments in

mathematics especially in the field of non-linear integro-differential equations in the hope of

finding an analytical solution to the BMS equation. The latter attempt may be possible in the

near future given the fact the BMS equation is analogous to quite few well known equations in

physics, such as the Batlisky-Kovchegov (BK) equation (see [98] and references therein) that

have been thoroughly studied for a long time. We hope to address some of theses issues in the

near future.



Appendix A

e+e− annihilation at one loop

In this appendix we explicitly present the calculation of the squared amplitude for one-loop

virtual corrections for the process (e+e− → qqg) and show that in the Eikonal approximation,

the virtual cross section turns out to contain exactly the same soft and collinear divergences

existing in the real emission contribution. To do so, the virtual corrections at this order are

depicted in Fig. A.1. Since we are interesting in the case of on mass-shell (anti) quark,

the contributions of the self energy diagrams are defined to be zero (the gluon is emitted and

absorbed by the same (anti)quark leg (p21 = p22 = 0)) and the only one-loop diagram contributing

is the vertex correction (p1.p2). The corresponding amplitude reads

iMv
1 = ū(p1, i) (−i gs tail γµ)

∫
d4k

(2π)4
−i

k2 + iǫ

i( /p1 + /k)

(p1 + k)2 + iǫ
B0×

×
i( /p2 + /k)

(p2 − k)2 + iǫ
(i gs t

a
lj γ

µ) v(p2, j) . (A.1)

Using the Eikonal approximation we can neglect the loop momentum k in the numerator and

k2 in the denominator (k2 ≪ p.k) which is off mass-shell (virtual) though (k2 6= 0). Performing

Figure A.1: The basic Feynman diagrams for virtual one-loop corrections to the born amplitude
e−e+ → qq̄ .
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Figure A.2: Poles of the integrand in Eq. (A.2) in the complex plane k0.

the usual Dirac algebra we obtain

iMv
1 = (−i) g2s CF [ū(p1, i)B0 v(p2, j) δij]

∫
d4k

(2π)4
1

(k2 + iǫ)

(p1.p2)

(p1.k + iǫ)(p2.k + iǫ)

= (−i) g2s CF (iM0)

∫
d4k

(2π)4
1

(k2 + iǫ)

(p1.p2)

(p1.k + iǫ)(p2.k + iǫ)
. (A.2)

The four-momenta of the outgoing quark, anti-quark and gluon are given in the center of mass

frame by

p1 =

√
s

2
(1, 0, 0, 1) ,

p2 =

√
s

2
(1, 0, 0,−1) ,

k ≡ (k0, k1, k2, k3) = (k0, ~k), ~k = (~kt, k
3) . (A.3)

We can evaluate the above integral using contour integration techniques. Substituting the

results into Eq. (A.2), we find

Mv
1 = (−i) g2s CFM0

∫
d3~k

(2π)3

∫ +∞

−∞

dk0

k0
1

(k0 − k01) (k
0 − k02) (k

0 − k03) (k
0 − k04)

. (A.4)

Eq. (A.4) has four pols in the complex k0 plane, and they are presented in Fig. A.2

k01 = |~k| − iǫ ; k02 = −|~k|+ iǫ ; k03 = k3 − iǫ ; k04 = −k3 + iǫ .

Closing the contour from below, we note that poles with negative imaginary parts are outside

the semicircle, and hence do not contribute when performing the residue theorem that finally

gives

Mv
1 = − g2s CFM0

∫
d3~k

(2π)3

[
(p1.p2)

2|~k| (p1.k)(p2.k)
− 1

(k3 − iǫ) |~kt|2

]
. (A.5)
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The second integral which is a purely imaginary part, is called “Coulomb (or Glauber) phase ”,

and its final result is given by

∫
d3~k

(2π)3
1

(k3 − iǫ) |~kt|2
=

iπ

(2π)2

∫
dkt
kt

, (A.6)

where kt = |~kt|. The one-loop correction to the cross section at order αs is proportional to

|M0 +M1
v |2

|Mv
1 +M0|2 = |M0|2 +M0M

v†
1 +Mv

1 M
†
0 .

The squared amplitude actually involves three terms; the squared of the first element is of

order α2
s which is higher than our accuracy and thus would be dropped. The squared of the

second term is the usual born cross section while the last one which is of order αs, is dubbed

the interference term and given by

M †
0 M

v
1 +Mv†

1 M0 = CF g
2
s |M0|2

[
−
∫

d3k

(2π)3 2Eg

(p1.p2)

(p1.k) (p2.k)
+ iπ

∫
dk

(2π)2 k

−
∫

d3k

(2π)3 2Eg

(p1.p2)

(p1.k) (p2.k)
− iπ

∫
dk

(2π)2 k

]

= −2CF g
2
s |M0|2

∫
d3k

(2π)3 2Eg

(p1.p2)

(p1.k) (p2.k)
. (A.7)

We note that the Coulomb term completely cancels in the sum, and the one-loop contribution

turns out to be exactly identical to the real emission squared amplitude given in Eq. (2.50) up

to a sign.



Appendix B

Calculation of NGLs coefficients

B.1 One and two-loop calculations

We evaluate in this section the integral (5.13) which gives the one-loop Sudakov coefficient S(1)
ij

for arbitrary dipole (ij). We introduce the following brackets:

{ij} = 1 + ci cj + si sj cosφij , (B.1a)

[ij] = 1 + ci cj − si sj cosφij , (B.1b)

where we remind the reader that ci = cos θi, si = sin θi and φij = φi − φj. First, we carry out

the azimuthal average

Iij(ck) =

∫ 2π

0

dφk

2π

(ij)

(ik) (jk)
, (B.2)

using contour integration techniques to obtain

Iij(ck) = I(1)
ij (ck) [Θ(ck − ci)−Θ(cj − ck)]+

+ I(2)
ij (ck) [Θ(ck − ci)−Θ(ck − cj)] , (B.3)

with

I(1)
ij =

(ij)

[ij]− 2 (ci + cj) ck + {ij}c2k

[
1− cick
ck − ci

+
1− cjck
ck − cj

]
, (B.4a)

I(2)
ij =

1

1− c2k

[
1− cick
ck − ci

− 1− cjck
ck − cj

]
. (B.4b)

Evaluating the polar integration results in a collinear divergence, as explained in the main text

(see Ref. [102] for the detailed calculation of such a term).
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The two-loops integral which represents the leading NGLs coefficient reads:

S(2)
ij = −

∫ 0

−1

dcℓ
2

dφℓ

2π

(ij)

(iℓ)(jℓ)

∫ 1

0

dck
2

[Iiℓ(ck) + Iℓj(ck)− Iij(ck)] . (B.5)

For the case (ij) = (aj) with cj < 0 and ca = 1 one simply finds:

S(2)
aj = −ζ2

2
. (B.6)

Moreover, for the simpler case (ij) = (ab) with ca = 1 and cb = −1 one obtains:

S(2)
ab = −ζ2

2
. (B.7)

Finally for (ij) = (ib), with i an arbitrary leg outside the measured hemisphere (ci < 0) one

has:

S(2)
ib = −1

2

(
ζ2 − Li2

[
2ci
ci − 1

])
. (B.8)

B.2 Three-loops calculations

The coefficient of the NGLs at three-loops for the hemisphere mass distribution in di-jet events

in e+e− collisions is given by

S(3)
ab =

∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π

∫ 1

0

dc2
2

∫ 2π

0

dφ2

2π

∫ 1

0

dc3
2

∫ 2π

0

dφ3

2π
A12

abĀ13
ab−

−
∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π

∫ 0

−1

dc2
2

∫ 2π

0

dφ2

2π

∫ 1

0

dc3
2

∫ 2π

0

dφ3

2π
B123
ab . (B.9)

For the ladder term (first term above), which was also evaluated and resummed to all orders

in the main text, we have the result

I
(3)
1 = ζ3 . (B.10)

For the second cascade term we have

I
(3)
2 = −

∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π

∫ 0

−1

dc2
2

∫ 2π

0

dφ2

2π

∫ 1

0

dc3
2

∫ 2π

0

dφ3

2π
w1

ab

(
A23

a1 +A23
1b −A23

ab

)
. (B.11)
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Substituting the results of integration from the previous subsection we find

I
(3)
2 =

∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π
w1

ab

(
S(2)
a1 + S(2)

b1 − S(2)
ab

)

= −
∫ 0

−1

dc1
2

2

1− c21

(
ζ2
2
− 1

2
Li2

[
2c1
c1 − 1

])
. (B.12)

Making the change of variables

x =
1 + c1
1− c1

⇒ c1 =
x− 1

x+ 1
, (B.13)

the cascade integral then reads

I
(3)
2 = −1

4

∫ 1

0

d lnx [ζ2 − Li2(1− x)] . (B.14)

Before computing this integral let us first give a short review of multiple polylogarithms.

• Multiple Polylogarithms:

Goncharov polylogarithms (GPLs) [86] are multivalued functions, defined recursively via the

iterated integral

G (a1, a2, . . . , an; x) =

∫ x

0

dt

t− a1
G (a2, . . . , an; t) , (B.15)

with G(x) = 1 and where ai, x ∈ C. Goncharov polylogarithm represented by G (a1, . . . , an; x),

is one variable function of say x which is called its argument, while the number of elements ai

is called the weight(transcendentality) of the GPLs.

Multiple polylogarithms defined as power series

Lin1,...,nk
(x1, . . . , xk) =

∑

1≤p1,<···<pk

xp11
pn1

1

. . .
xp1k
pnk

k

. (B.16)

These power series are convergent in a polydisc |xi| < 1. These polylogarithms can be written

in terms of Goncharov polylogarithms as

Lin1,...,nk
(x1, . . . , xk) = (−1)k G



0, . . . , 0︸ ︷︷ ︸
nk−1

,
1

xk
, . . . ,

1

x2, . . . , xk
, 0, . . . , 0︸ ︷︷ ︸

nk−1

,
1

x1, . . . , xk
; 1



 . (B.17)

For special values of the weight vector (a1, . . . , an), GPLs reduce to special cases which are
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the so-called logarithms, classical polylogarithms and harmonic polylogarithms:

G (0, . . . , 0n; x) =
1

n!
lnn x ,

G (a, . . . , an; x) =
1

n!
lnn
(
1− x

a

)
,

G (0, . . . , 0n−1, a; x) = −Lin

(x
a

)
, (B.18)

where the classical polylogarithms are defined recursively

Lin(x) =

∫ x

0

dt

t
Lin−1(t) , (B.19)

with Li1(x) = − ln(1− x). The differential relation is

x
∂

∂x
Lin(x) = Lin−1(x) . (B.20)

We have introduced the vector notation ~an = (a1, . . . , an), Harmonic polylogarithms HPL’s are

defined via

H (~a; x) = (−1)k G (~a; x) , ai ∈ {−1, 0, 1} , (B.21)

where k is the number of elements in ~a equal to (+1).

The Shuffle product [87]: The product of two GPLs with weights n1 and n2 of the same

argument x is a combination of GPLs of argument x with weight n = n1 + n2

G (~an1
; x) G (~an2

; x) =
∑

~an=~an1
⊎~an2

G (~an; x) , (B.22)

where ~an = ~an1
⊎ ~an2

represents all different possible permutations of the sequences ~an1
and

~an2
in which the relative ordering of the elements of both sets are preserved.

Notice that unlike the two and three loops polar integrals that can easily be performed

using Mathematica, when we move on to four loops, polar integrals involve complicated clas-

sical polylogarithms that could not be evaluated following the same method. We can instead

make progress by exploiting the iterated structure of these integrals and we are able to use the

technology of symbols and coproducts which paved the way to the conversion of these compli-

cated classical polylogarithms into GPL’s whose integrals can trivially be done. These classical

polylogarithms are however usually not special cases of the GPL’s and hence this conversion is

not straightforward as it is shown in the above Eq. (B.18). In order to make this conversion

possible, it is necessary to resorting to a certain tensor calculus associated to iterated integrals,

are the so-called “Symbols technology” [88], i.e, the question arises as to how one can determine

a class of functions that can reproduce the same symbol. We will not provide a general defi-

nition, but we will instead just mention some examples of symbols corresponding to the most
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commonly used multipolylogarithms and for every non-negative integer n we have

S (log x) = x ,

S
(

1

n!
logn x

)
= x⊗ · · · ⊗ x︸ ︷︷ ︸

n

,

S (Linx) = −(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
(n−1)

,

S [G (a1, . . . , an; x)] =

(
1− x

an

)
⊗ · · · ⊗

(
1− x

a1

)
. (B.23)

The symbol of the iterated integral is then given by

S (Li2 [1− x]) = −x⊗ (1− x) . (B.24)

We see that

S [−G (1, 0; x)] = −x⊗ (1− x) = S (Li2 [1− x]) . (B.25)

Since the symbol is related to the differential of the transcendental function it maps all constants

to zero, hence two functions with the same symbol differ by constant terms. At transcenden-

tality (weight) 2 they differ by terms π2 and iπ × ln. Therefore

Li2[1− x] = −G(1, 0; x) + απ2 + βiπ × ln . (B.26)

For 0 < x < 1 the dilogarithm is real and thus β = 0. The rational number α by computing the

two sides of the equality numerically. Using the program GiNaC [89] we find α = 0.1666666 · · · =
1/6. In other words

Li2[1− x] = −G(1, 0; x) + π2

6
= −G(1, 0; x) + ζ2. (B.27)

Using the definition of the GPLs, we can easily carry out our original integral, then substituting

back into Eq. (B.14) and using the shuffle identities we end up with

I
(3)
2 (x) = −1

4
G(0, 1, 0; x) = −1

4
[G(0, 1; x)G(0; x)− 2G(0, 0, 1; x)]

= −1

4
[−Li2[x] ln[x] + 2Li3[x]] . (B.28)

Substituting the limits one immediately gets I(3)2 = −ζ3/2, and thus

S(3)
ab =

ζ3
2
. (B.29)

We have also checked this result numerically.



B.2 Three-loops calculations 96

B.2.1 Four-loops calculations

The NGLs coefficient at this order reads:

S(4)
ab =

∫
dΩ1234 Θ

out
1 Θin

4

(
−Θin

2 Θin
3 A12

ab Ā13
ab Ā14

ab+

+3Θin
2 Θ

out
3 A12

abB̄134
ab +Θout

2 Θin
3 A

1234
ab −Θout

2 Θout
3 C1234

ab

)
. (B.30)

The ladder term is simple and yields the result

I
(4)
1 = −

∫
dΩ1234Θ

out
1 Θin

2 Θ
in
3 Θ

in
4 A12

abĀ13
abĀ14

ab

= −
∫ 0

−1

dc1
1− c21

ln3

[
c1 − 1

2c1

]

= −3ζ4. (B.31)

The ladder-cascade term is given by

I
(4)
2 = 3

∫
dΩ1234Θ

out
1 Θin

2 Θ
out
3 Θin

4 A12
abB̄134

ab

=
3

2

∫ 0

−1

dc1
1− c21

ln

[
c1 − 1

2c1

] (
ζ2 − Li2

[
2c1
c1 − 1

])

=
21

16
ζ4 . (B.32)

Note that we have used the Hopf algebra of co-products to carry out the above integral. Addi-

tionally we have

I
(4)
3 =

∫
dΩ1234Θ

out
1 Θout

2 Θin
3 Θ

in
4 A

1234
ab

=
1

4

∫
dΩ12Θ

out
1 Θout

2

2

1− c21

[
2(1− c1c2)

(1− c22)(12)(
ln

[
c2 − 1

2c22(c1 − 1)

]
+ ln[12]

)2

− 8

1− c22
ln2

(
c2 − 1

2c2

)]

=
17

16
ζ4 . (B.33)

The last integral to perform at four loops is the cascade term

I
(4)
4 = −

∫
dΩ1234Θ

out
1 Θout

2 Θout
3 Θin

4 C1234
ab

= −
∫

dΩ1234Θ
out
1 Θout

2 Θout
3 Θin

4 w
1
ab

[
B234
a1 + B234

1b − B234
ab

]
. (B.34)

Note that the integrations over each separate term is divergent, but the overall result is finite.

We can put a spurious collinear cutoff ǫ on the integration over c1 and perform each integral
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separately. The divergences cancel in the sum and ǫ disappears. The integral over the term

involving B123
ab is straightforward and yields the result

I
(4)
4,1 =

∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π
w1

ab

ζ3
2

= −ζ3
4
lim
ǫ→0

ln
ǫ

2
. (B.35)

The second integral is also easy and gives

I
(4)
4,2 =−

∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π

∫ 0

−1

dc2
2

∫ 2π

0

dφ2

2π
w1

abw
2
1b

1

2

×
(
Li2

[
2c1
c1 − 1

]
− Li2

[
2c2
c2 − 1

])

=− 1

4

∫ 0

−1

dc1
1− c21

∫ 0

−1

dc2
1− c22

(1 + c1)(1− c2)

|c1 − c2|

×
(
Li2

[
2c1
c1 − 1

]
− Li2

[
2c2
c2 − 1

])
. (B.36)

Thus

I
(4)
4,2 = −ζ3

4
lim
ǫ→0

ln
ǫ

2
− 3ζ4

4
. (B.37)

The remaining integral is the lest trivial of all. It reads

I
(4)
4,3 =

−
∫ 0

−1

dc1
2

∫ 2π

0

dφ1

2π

∫ 0

−1

dc2
2

∫ 2π

0

dφ2

2π
w1

ab(w
2
a1 + w2

1b)A34
12

= −
∫ 0

−1

dc1
1− c21

∫ 0

−1

dc2
1− c22

(1− c1c2)

∫ 2π

0

dφ2

2π

1

(12)
A34

12 , (B.38)

where the bar in A34
12 means that both particles 3 and 4 have been integrated out with 3 being

out and 4 inside the measured hemisphere. We find for this term the result

I
(4)
4,3 = lim

ǫ→0

ζ3
2
ln
ǫ

2
− 7ζ4

16
. (B.39)

Thus the overall cascade contribution to the non-global coefficient at four loops is given by

I
(4)
4 = −19

16
ζ4 . (B.40)

Finally, adding up the results of the various contributions (ladder, ladder-cascade and cas-

cade) to the NGLs coefficient at this order we obtain the result

S(4)
ab = −29

16
ζ4 . (B.41)
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Abstract

The study of jet observables is of great importance for current and future collider phe-

nomenology, including hunting for new physics as well as making precision measurements. In

this thesis we perform perturbative calculations for some relevant non global event and jet

shapes observables where the jets are produced in e+e− colliders, such as the FCC-ee.

We start by specifically examining the non-global and clustering logarithms in the azimuthal

decorrelation between two jets in e+e− dijet events, where the jets are defined with the gener-

alised kt or anti-kt algorithm with E-scheme recombination. We calculate at one loop and to

all orders the leading global single logarithms of the distribution of the said observable. We

also compute at fixed order up to four loops the non-global and clustering logarithms, and

numerically resum them to all orders in the large-Nc approximation. We compare our results

at O(αs) and O(α2
s) with those of the EVENT2 fixed-order Monte Carlo program and find agree-

ment of the leading singular behavior of the azimuthal decorrelation distribution. Finally, we

use the program Gnole to calculate the resummed distribution at NLL accuracy, thus achieving

state-of-the-art accuracy for the resummation of this quantity.

Then we address the Banfi-Marchesini-Smye (BMS) equation which accounts for non-global

logarithms to all orders in perturbation theory in the large Nc approximation. We show that

the squared amplitudes for the emission of soft energy-ordered gluons are correctly embedded

in this equation, and explicitly verify that they coincide with those derived in previous works in

the large-Nc limit up to sixth order in the strong coupling. We perform analytical calculations

for the non-global logarithms up to fourth order for the specific event shape hemisphere mass

distribution in e+e− collisions, thus confirming previous semi-numerical results. We show that

the solution to the BMS equation may be cast into a product of an infinite number of expo-

nentials each of which resums a class of Feynman diagrams that manifest a symmetry pattern,

and explicitly carry out the computation of the first of these exponentials. Our results exhibit

full agreement with those reported in the literature.



Résumé

L’étude des observables des jets est d’une grande importance pour la phénoménologie actuelle et

future des collisionneurs, y compris la recherche de nouvelles physiques ainsi que la réalisation de

mesures de précision. Dans cette thèse, nous effectuons des calculs perturbatifs pour certaines

observables de jet pertinentes et non globaux où les jets sont produits dans des collisionneurs

e+e−, comme le FCC-ee.

Nous commençons par examiner spécifiquement les logarithmes non globaux et de clustering

dans la décorrélation azimutale entre deux jets dans des événements e+e− dijet, où les jets sont

définis avec l’algorithme généralisé kt ou anti-kt avec recombinaison E-scheme. On calcule à

une boucle et à tous les ordres les principaux logarithmes simples globaux de la distribution

de ladite observable. Nous calculons également à ordre fixe jusqu’à quatre boucles les loga-

rithmes non globaux et de clustering, et les résommons numériquement à tous les ordres dans

l’approximation à grand Nc. Nous comparons nos résultats à O(αs) et O(α2
s) avec ceux du

programme Monte Carlo à ordre fixe EVENT2 et trouvons un accord sur le comportement

singulier principal de la distribution de décorrélation azimutale. Enfin, nous utilisons le pro-

gramme Gnole pour calculer la distribution resommée avec une précision NLL, et donc obtenant

létat de l’art pour la resommation de cette quantité.

Ensuite, nous abordons l’équation de Banfi-Marchesini-Smye (BMS) qui tient compte des

logarithmes non globaux à tous les ordres dans la théorie des perturbations dans la grande

approximation Nc. Nous montrons que les amplitudes au carré pour l’émission de gluons à

énergie douce sont correctement intégrées dans cette équation, et vérifions explicitement qu’elles

coincident avec celles obtenues dans des travaux antérieurs dans la limite des grands Nc jusqu’au

sixiéme ordre dans le couplage fort. Nous effectuons des calculs analytiques pour les logarithmes

non globaux jusqu’au quatrième ordre pour la distribution de la specific event shape hémisphére

mass dans les collisions e+e−, confirmant ainsi les résultats semi-numériques précédents. Nous

montrons que la solution de l’équation BMS peut être convertie en un produit d’un nombre infini

d’exponentielles dont chacune résomme une classe de diagrammes de Feynman qui manifestent

un motif de symétrie, et effectuons explicitement le calcul de la première de ces exponentielles.

Nos résultats sont en parfait accord avec ceux rapportés dans la littérature.
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