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Introduction 
 

Motivation for Material Science 

 

 Nowadays, human civilization is practically entirely dependent on technological advances 

in different disciplines, and searching strongly for energy from different sources to accommodate 

this development. Therefore, it is essential to accelerate the device's development for both 

technological and energy purposes. For example, accelerating the development of optoelectronic 

devices improves medical equipment, control access systems, and telecommunications fields like 

high-speed internet and 5G. Moreover, the progress in the development of materials for 

photovoltaic device components creates opportunities to obtain safe, clean, and renewable energy. 

In fact, there is a significant growth in solar energy production from less than 1TWh in the 1990s 

to more than 3400TWh in 2022 (see Figure 1) [1]. This progress was accompanied by the discovery 

of new generations of solar cells, and the development of new materials to achieve stable and high-

performance solar cells. 

 In general, the material development process has been passed through different paradigms 

over history (see Figure 2) [2]. The first paradigm was based on trial-and-error experimentation, 

this classic approach relied on giving a solution based on the experience and the intuition of the 

material scientist, then learning from the failure and trying again [3]. This approach is extremely 

time-consuming and exhausting the resources. For instance, Thomas Edison discovered the 

carbonized cotton used in the light bulb after many failed experiments [4]. 

 In the second paradigm, the materials scientist used the physical laws and semi-empirical 

models gathered from the experimental results to lead the discovery of new materials. In the late 
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20th century, the development of powerful computers led to the computing of new materials 

proprieties by using first principles and solving the Schrodinger equation. For example, the ab 

initio simulation method, and finding the material proprieties using Density Functional Theory 

(DFT). The success of this approach led to the establishment of many aspiring projects. For 

example, the Material Project [5], the Material Genome Initiative (MGI) [6], and the Open 

Quantum Materials Database (OQMD) [7]. Additional materials databases and projects are 

summarized in Ref. [8-14]. These projects provide very large computation data for the design of 

new materials. However, given the fact that these simulation methods are powerful and were used 

to discover new materials, but the very expensive computational costs and sometimes required 

large experimental data (e.g. Computational thermodynamics) posed a significant limitation. 

 

Figure 1- Global primary energy consumption by source 

 The fourth paradigm is guided by data-driven approaches like Machine learning (ML), 

Data Mining, etc. Recently, the development of the ML field has provided a tremendous revolution 
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in many disciplines including materials design. The main idea of the ML approach is to create a 

model derived from experimental and/or computational data when the analytic models are not 

promising, this model reflects the patterns and the relationships in the data and is used to guide the 

design of new materials. In particular, the main advantage of this approach is it usually much faster 

than the simulation and experiments approaches, and can extract highly complex patterns from the 

data. However, there are several challenges associated with extracting knowledge from large 

volumes of data. In many cases, the accuracy of the ML model is inefficient enough to meet the 

material design needs. However, it is still in the early stages of development. 

 

Figure 2- Four paradigms of material science [15]. 

Problem statement and Overview of the proposed approaches 

 

The Perovskite Solar Cells (PSC) is a third-generation solar cell that elicited the interest of 

many researchers. Since their discovery in 2009, the PSCs attained a massive boost in their power 

conversion efficiency (PCE) from 3.8% in 2009 to 26% in 2023 [16]. Along with their easy and 
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cheap fabrication cost, these two factors place the PSCs as an important competitor in solar energy 

generation. However, the barrier to the successful commercialization of this technology is 

principally due to its instability. In fact, stability, efficiency, and costs are the golden triangle for 

a successful practical application. Therefore, there is a progressively continuous shift in research 

toward the investigation of PSC stability. Figure 3 shows a simple research in Science Direct by 

using the terms of Perovskite Solar Cell and stability (using AND operator), in 2022 the number 

of papers involving the stability of the PSC reached 3438 paper compared to 74 paper in 2010s, 

which indicate a great interest in carried out this topic. Consistently, these researches generate a 

huge amount of accumulated experimental and computational data. However, earlier the data 

collected were neglected and many opportunities to improve the understanding of the PSC devices 

were missed because of the lack of efficient methods for addressing these data.  Therefore, in this 

work, we have used ML techniques to extract the general patterns and important and useful 

information from the PSC device data. 

In this thesis, our objective is to use different ML and Artificial Neural Networks (ANN) 

techniques to provide clear guidance to solve different problems that hinder the development of a 

practical PSC device. In each chapter of this work, we will focus on one specific problem. Which 

will be introduced at the start of the chapter. Also, each chapter contains a detailed definition and 

description of the ML technique used. Then, provide the details of the methods and materials used. 

And finish with an application of the proposed approach to solve the assigned problem. The 

problems that will be discussed in this thesis are as follows: 

Problem 1: Investigating different ML and ANN algorithms to find the most suitable 

algorithm for our dataset. In Chapter 1, we provided a very simple introduction to the basic 

concepts of machine learning in general and a brief explanation of how the techniques used in this 
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research works, then in the further chapters we will dive into more depth of these techniques. In 

Chapter 2, we present a general idea of how to apply different machine learning techniques to our 

dataset and compare them to extract the most suitable one for our problems and determine the 

strategy to improve the performance of the ML models. 

 

 

 

 

 

 

 

 

 

 

Figure 3- Number of papers published involving PSC stability per year  

Problem 2: Investigating the different factors that influence the degradation of the PSC 

device's stability. In Chapter 3, we used Extreme Gradient Boosting and MultiLayer Perceptron 

algorithms to investigate the influence of the back contact on the total device stability and estimate 

the adequate material that reduces the device stability degradation. In Chapter 4, we explore a large 

number of different extrinsic and intrinsic factors and analyze their influence on PSC device 
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stability by using the Extra Tree algorithm. The key motivation of this chapter is to extract the 

important factors that cause the device instability and propose various solutions to achieve long-

term stability. 

Problem 3: A guide to improve the PSC efficiency through optimizing the device layer 

proprieties and finding adequate materials for this purpose. In Chapter 5, we focused on enhancing 

the PSC device's power conversion efficiency using the Random Forest algorithm. The approach 

employed is based on finding the optimum device proprieties like band gap and the thicknesses of 

the active layer and recommending candidate materials for each layer that are anticipated to 

enhance the device PCE.  
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Chapter 1. Simple Introduction to Machine Learning 
 

1.1 Introduction 
 

 The Machine learning field has generated eminently attention in recent years due to the 

fact that it has demonstrated significant capabilities in different tasks. However, the ML field is a 

relatively old field that has been studied for decades. Since W.Pitts and W. McCulloch published 

a paper in 1943 involving a mathematical modeling of Neural Networks and decision-making in 

cognitive systems [17]. Thereupon, the idea of Artificial Intelligence growth. In 1950 a tuning test 

to determine computing intelligence was created by Alan Turing [18]. Where the first drafting of 

the term “Machine learning” was in 1959 by Arthur Samuel in his paper entitled “Some studies in 

machine learning using the game of checkers” [19]. In 1962 he lost in that game (checkers) against 

the computer which was considered at that time a big milestone in this field. From this point, 

machine learning techniques and computer programs start to develop. After the early 1980s, the 

first real-world applications of ML appeared [20]. Interestingly, the two main conferences on 

machine learning started at that time, the International Conference on Machine Learning (ICML) 

in 1980 and Neural Information Processing Systems (NeurIPS, formerly NIPS) in 1987 [20]. In 

1989, an early remarkable achievement has developed from machine learning: spoken word 

recognition [21], and the autonomous driving car [22]. And in 1997, Deep Blue (the famous chess-

playing system) shocked the world by beating the world champion in the chess game [23]. Figure 

1.1 Cite a few historical landmarks that are significant to the development of ML. However, over 

the past years, the ML field has grown tremendously and started to be widely used. From daily life 

like movie recommendations to industry, medicine, and public health. So what is ML? And what 

is the basic attribute of ML?  
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Figure 1.1- Some of the landmarks of ML development 

 Machine learning is considered as a branch of Artificial Intelligence (AI). Where a system 

can learn and improve based upon data without being explicitly programmed by using algorithms 

that can imitate the way humans learn [19][24]. ML models can be classified into three types 

depending on the method of training: Supervised learning, Unsupervised learning, and 

Reinforcement learning. 

 Before we go further into details, let's see in brief the machine learning process. So, one of 

the key things is that we are going to give machine examples. And these examples are characterized 

by data samples consisting of inputs and outputs (target). The ML techniques analyze the data and 

- by itself – create a "model" out of it. Then, this model is used to achieve what we want as the 

final product [25]. For instance, ML models can be used for forecasting, Object Detection, Pattern 

Recognition, Cluster analysis, and more. Figure 1.2 illustrates the ML process. 
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Figure 1.2- What happens in the ML process 

 

 In particular, if the training data consists of inputs and output pairs {inputs, output}, and 

the ML aims to learn a mapping from the inputs to an output, this method is called Supervised 

Learning, where the correct output is provided by a human (supervisor) during the training process. 

In Unsupervised learning, the data consists only of inputs {input}, and there is no supervisor [24]. 

Generally, unsupervised learning is used for investigating and finding the regularities in the data. 

Reinforcement learning is employed when there is a sequence of actions to reach the goal. 

Generally used to generate a policy when optimal interaction is required [24, 25]. In this research, 

we will focus on supervised learning where the inputs are all aspects of Perovskite Solar cell (PSV) 

manufacturing and the output is either power conversion efficiency (PCE) or long-term stability. 

The reason for choosing PSV will be discussed further in the next chapter. 

 Before we jump into the practical part. We must illustrate - to some extent- the main 

concepts behind some ML techniques used in this work. Understanding the specificities of ML 
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techniques is vital for choosing the most optimal inference approach and foundational for 

understanding the next chapters. 

1.2 Machine learning Techniques 
 

1.2.1 Regression and Classification 
 

 Regression and Classification are the typical application types that are frequently used in 

supervised learning. In machine learning, Classification refers to a problem with predictive 

modeling where the model finds the class to which the data belongs [25]. Some examples of 

classification problems: 

 Given an Email     Classify if it is Spam or Regular 

 Given a Document    Classify the genre of the document (science, 

sport, ….etc) 

 Face recognition services      classify if one of the registered users 

  

Taken the first example, the Email is the input for the model which will predict to which 

class it belongs. Spam class or Regular class. In contrast, the Regression model will estimate a 

continuous value of the output instead of determining a specific class. As an example of regression, 

forecasting the weather given related features like temperature, humidity … etc. The different input 

factors are called "features". Another example of regression –from this research- is the estimation 

of the PSV PCE given the cell configuration materials. In summary, the ML analysis provides 

classification when we want the model to determine in which group of data the input belongs, and 

regression when we want the model to estimate required values. 
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1.2.2 Overview of the machine learning process 
 

 The objective of this section is to illustrate the learning processes that are associated with 

most supervised learning methods. The task of machine learning is to create a model which will 

provide an output from a given input. The input is denoted as x, and the output is denoted as y. the 

nature of x can take different forms. It can for example be a single number, vector or matrix, and 

even image or text. Typically, in our case, the nature of y takes two forms. A real number in the 

case of regression, or it corresponds to a label in the case of classification. 

 Actually, the ML model can be considered as a function that transforms x into y. So that 

𝑦 = 𝑓(𝑥). The function 𝑓 also can be artificial neural networks. Wherein the form of f  is as 

follows: 

𝑓(𝑥) = 𝑊. 𝑥 + 𝑏     (1) 

Where W is called weight and b bias which represent the learnable parameters, W controls 

the signal (strength) of an input feature, and b is an additional unit that helps to correct the model. 

Moreover, W and x could be a matrix where the columns in x represent a training example and the 

rows represent a specific feature, while W represents the corresponding weights. 

 Consider another function ℓ called the Loss function that measures the error between the 

output of the function 𝑓  and the correct output provided by the supervisor. The closer the loss 

function is to zero, the closer the output of 𝑓 is to the true value. There are several forms of Loss 

function. For example, the classical least square error function.  That is such that 

ℓ(𝑓(𝑥), 𝑦) = (𝑓(𝑥) − 𝑦)2 .  (2) 
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The data provided for the learning process is called the Training set and is denoted (xn, yn). 

Where n represents the nth example of the training set. However, the training process involves 

finding the function 𝑓 that minimizes the average error of the training set which is called the Cost 

function and denotes 𝐽. Which satisfies: 

𝐽(𝑓) =  
1

𝑛
 ∑ ℓ(𝑓(𝑥)𝑖, 𝑦𝑖)𝑛

𝑖=1      (3) 

The procedure of minimizing the cost function is called the optimization procedure. 

Usually, the function 𝑓 is iteratively modified (by modifying w and b) until the cost function 

reaches the global minimum [20]. However, minimizing the cost function doesn't guarantee that 

the model succeeds in the generalization for new data, it usually happens when the learned function 

is too specific to the training set. This problem is called Overfitting. And usually appears when the 

data is too heterogeneous and the dimensionality is too high. Figure 1.3 illustrates the learning 

process. 

 

Figure 1.3- Model learning steps 
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1.2.3 Suport Vector Machine (SVM) 
 

 Support Vector Machine (SVM) is a supervised machine learning algorithm that can be 

used for both classification and regression analysis [26]. Nevertheless, it is often used for 

classification objectives. SVM builds a model that can segregate with an extreme margin a n-

dimensional space into classes. Consider Figure 1.4 diagram which we have two different classes 

that are separated using a decision boundary (also called hyperplane) 

 

Figure 1.4- Showcase of SVM hyperplane in case of 2-dimension problem 

There are two types of SVM: 

 -Linear SVM: Linear SVM is used when we can separate different classes of data using a 

single straight line (in the case of 2D space). Take for example figure 1.4. In order to facilitate. 

Assuming that the input data contains only two features X1 and X2. Hence, the Linear SVM helps 

to find the best decision boundary to classify the pairs (X1, X2) in either red or blue classes. 
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 Non-linear SVM: Non-linear SVM is used when the data classes cannot be separated using 

a straight line (see Figure 1.5). The way for SVM to segregate non-linear data is by applying the 

Kernel trick [27]. So there is a function that transforms for all Xi of input data in space Ӽ an inner 

product in another space Ѵ for mapping the inputs into n-dimensional feature space. 

 We have    φ: Ӽ   Ѵ  

Which satisfies:    K(Xi, Xj) = <φ(Xi), φ (Xj)> Ѵ  

 However, working in high-dimensional feature space increases the generalization error of 

the SVM model. Hence, much more training data is required to perform well [28]. Nevertheless, 

the SVM algorithm has been widely used in material science. Notably applied to assist the design 

and fabrication of solar cells [29, 30]. 

 

Figure 1.5- Example of nonlinear separable data. 
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From Figure 1.5 we can observe that the Linear boundary cannot separate the blue class 

from the red class. Hence, the probability of getting an incorrect prediction increases. While the 

Non-Linear boundary facilitates the separation between the two classes. Therefore, it is critical to 

know the type of your data, if is it Linear or Non-Linear separable to correctly choose the 

appropriate model. In the next chapter, we will see a practical application of this problem. 

 

 

Figure 1.6- Diagram explains the general structure of a decision tree. 

1.2.4 Decision Tree (DT) 
 

 Decision Tree development began in 1959 in a paper titled “Matching and Prediction on 

the Principle of Biological Classification” [31]. In late 1970s. Breiman et all invented the CART 
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version (a space of regression tree), which would become later a world standard for decision tree 

analysis [32]. DT is considered a supervised learning method used for both classification and 

regression problems.  As it relies on a tree structure with two types of nodes, a Decision Node and 

a Leaf Node (see Figure 1.6). The leaf node represents the outcome of the model. 

In particular, given an example of labeled data (Xn, Yn), with n ∈ {1, …., N}. The Decision 

Tree algorithm creates a non-linear decision separator by using several linear separators. As in 

SVM, these boundaries take the form of a hyperplane which can be written as: Xl = c. where I 

represents input features. l ∈ {1, …., L}, 

 

Figure 1.7- Example of a decision boundary made by a Decision Tree. Each hyperplane 

represents a decision node 

Moreover, Figure 1.7 shows an example of a hyperplane separator in the case of 2D input 

data (two features: X1, X2), with two different classes represented by red and blue colors (two 
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labels: Y1, Y2). This example is a task for a classification problem, in the case of regression 

problem Yn ∈  ℝ. Each node of the decision tree is associated with a hyperplane.  

The following terminologies in Figure 1.6 help to explain this concept better: 

Root Node: The root node is the start of the decision tree that represents the entire dataset. Which 

will be divided into two or more sets. 

Splitting: Splitting is the dividing process of the decision nodes into child nodes by using splitting 

criteria. 

Parent/child node: The root node represents the parent node. Where the other nodes are called 

child nodes. 

Leaf node: It represents the last node which the tree cannot divide further. It also gives the final 

output of the model. 

 Usually. A Decision Tree performs poorly in its basic form in complex problems. 

Therefore, in this research, we used the ensemble method based on the Decision Tree technique 

which often can achieve better results compared to a single decision tree approach. In particular, 

the ensemble learning algorithms used in this research are Extra Trees (ET), eXtreme Gradient 

Boost (XGBoost), and Random Forest (RF). We will discuss the differences between these 

algorithms and their use case further in the following chapters. However, each ML technique has 

its costs and benefits depending on the problem assigned, and there are no algorithms that are valid 

for every problem. Therefore, our approach relies on trying different ML techniques and then 

choosing the most convenient technique for a particular problem. 
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1.2.5 Concept of Artificial Neural Networks (ANN) and Deep Learning 
 

Table 1.1- Analogy between biological and artificial neural networks 

BIOLOGICAL NEURAL NETWORK ARTIFICIAL NEURAL NETWORK 

NEURON 

DENDRITE 

AXON 

CONNECTION OF NEURONS 

Node 

Input 

Output 

Connection Weight 

 

Artificial Neural Networks (ANN) were introduced as an implementation form of ML that can 

imitate the way the human brain works [25]. This model is based on a collection of nodes called 

Artificial Neurons which mimics the mechanism of biological neurons. Table 1.1 illustrates the 

analogy between the artificial NN and the brain. The output of each artificial neuron is calculated 

using a non-linear function called the Activation function. There are several types of activation 

functions depending on the task of the neuron. The following example shown in Figure 1.8 

illustrates an ANN with a single node and three inputs. 

The input signal {xi} is multiplied by a coefficients called weights {w} associated with another 

factor b called bias producing what is known as weighed sum (in this step the concept is similar to 

the supervised ML) which is calculated as follows: 

𝑣 =  ∑ 𝑤𝑖 𝑥𝑖
𝑛
𝑖 + 𝑏       (3) 
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Then, the weighted sum enters the node and yields the output by using the activation function as 

follows: 

𝑦 = 𝑓(𝑣) 

A single node by itself usually doesn't perform well. However, their interconnection allows to 

extraction of higher-level patterns from the data. Therefore, Deep learning was introduced, which 

represents the use of multiple nodes in addition to multiple layers called hidden layers, as shown 

in Figure 1.9. Furthermore, there are two main types of neural network models depending on the 

learning method: 

 

Figure 1.8- Example of a simple artificial neuron (Perceptron) 

A Feedforward network (FNN): is considered the simplest implementation of NN. In this 

method, the signal (information) moves from the input layer to the output layer. There is no back 

forward to the previous nodes [33]. 
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Recurrent network (RNN): this method creates a cycle allowing some nodes to update their 

attached inputs. This feedback allows to reuse of the output data to affect the earlier learning stages 

[34]. 

 

Figure 1.9- Example of Deep learning neural network 

You can easily find some examples using the concepts of ML and Deep Learning 

interchangeably. In general, the relation between ML, Deep Learning, and AI is as follows: "Deep 

Learning is a kind of Machine learning, and Machine learning is a kind of Artificial Intelligence” 

[25]. 

1.2.6 Definition of some main concepts 
 

Overfitting: this phenomenon is considered the primary cause of the model failure of the 

generalization process for new data. This phenomenon occurs when the model learns the detail 

and noise from the training data (fit the training data perfectly), and prevents the model from 
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reflecting correctly the general behavior. Figure 1.10 gives a comparison between overfitting and 

underfitting. 

 

Figure 1.10- Overfitting and underfitting in machine learning 

 From Figure 1.10, we can see that the Overfitted model cannot predict correctly new data 

because that model seems unsystematic and failed to extract a particular pattern from the training 

data. Where the Underfitted model failed to fit both training and new data. Obviously, the 

appropriate model is between underfitting and overfitting training, even though that model is not 

100% correct, but it gives a very close prediction of the true values. 

Noise in data: This term represents the data samples that have meaningless information in the 

machine learning process or include corrupted data. Noisy data can affect the learning process and 

confuse the ML model. 

Bias: Is a phenomenon in the ML model that yield the results to diverge from the correct value 

due to some features in the dataset being given incorrect weight. This occurs due to the false 

assumptions during the machine learning process. 
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1.3 Applications of ML in Material Science and Related works 
 

 In this section, we outlined several works that have applied machine learning techniques 

in the material science field. There are various applications of machine learning depending on the 

purpose of the study. Usually, the objective can be summed up as follows: 

 Material discovery: Under this category, there are properties prediction, active learning, 

and inverse design [35] (this research falls into this category). 

 Properties prediction models aim to estimate the uncovered material properties based on 

their structure or chemical composition. We will see an application of that in chapter 5, where we 

predict the perovskite band gap using the structure and the components of the perovskite solar cell. 

Moreover, regarding new materials, this technique usually can run orders faster than ab initio 

simulations or experiments [35]. In fact, this will significantly accelerate material discovery. 

Moreover, it has been applied successfully to accelerate the development of organic light-emitting 

diodes [36], and lithium-ion batteries [37]. These review papers discussed several applications [29, 

38, 39]. 

The objective of the active learning models is to discover the complex material space. Such 

as the configuration of atomic structure using Bayesian active learning [40].  Whereas, inverse 

design aims to predict the material structure that assists in optimizing the performance of a device 

based on existing data. For instance, in Chapter 4 we estimated the optimum structure for achieving 

high stability in PSV devices. 

 Interpretation and Visualization: The goal of interpretation and visualization models is 

to help understand complex material spaces and discover the main factors that can potentially assist 
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in finding new theories for materials design. For example, mapping the uncharted territory in ice 

structures [41]. 
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Chapter 2. A comparison of different Machine Learning and 

artificial neural networks techniques for forecasting 

perovskite solar cells (PSCs) stability 
 

2.1 Introduction 
 

 In this chapter, we present a comparison between three machine learning and neural 

networks (NN) techniques depending on their performance in forecasting perovskite solar cell 

stability. The ML and NN models are trained using experimental data from 377 solar cell samples 

collected from previous works. The three algorithms used in this chapter are: SVM, Multilayer 

perceptron (MLP), and Probabilistic Neural Networks (PNN). However, SVM and MLP 

techniques are widely used in material science and photovoltaic research.  For instance, M.Pan et 

al used SVM for predicting the photovoltaic power for an ultra-short term [42], while MLP is 

commonly used in fault identification. For example, F. Khondoker et al used MLP for photovoltaic 

panel array fault prediction [43]. Whereas, the PNN is much less used due to the property of this 

algorithm which is hard to implement. Case in point, R.G.Vieira et al published a work involving 

a comparison between multilayer perceptron and probabilistic neural networks for photovoltaic 

system fault detection [44].  

  In particular, we will first provide an identification of the perovskite solar cell and the ML 

techniques used in this chapter. Dataset collection and organization also will be clarified. Then, 

we will discuss the model building and the hyperparameter tuning. Further, we will explore the 

dataset, and we will discuss and analyze the model's obtained results. Moreover, we compared 

these results with experimental data to investigate the most suitable algorithm for the intended 
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goal. Finally, we will close the chapter with our proposition for achieving better results and give a 

brief outlook of this approach. 

2.2 Data collection and preparation 
 

2.2.1 Perovskite solar cell description 
 

 The perovskite solar cell is considered a third-generation solar cell based on emerging thin 

film technology [45]. It was discovered by Tsutomu Miyasaka in 2009 by modifying the dye-

sensitized solar cell device structure with a perovskite thin layer deposited onto titanium oxide 

(TiO2) [46, 47]. The power conversion efficiency generated was only 3.8%. However, the stability 

of the cell performs very poorly due to the presence of a liquid electrolyte. In 2012, the first solid-

state PSC was fabricated using MAPbI3 deposited onto a thick mesoporous TiO2 layer with Spero-

MeOTAD as a hole-transport layer and Au as back contact [48]. Figure 2.1 represents the 

development of the PSC PCE through the past decade, this figure shows only the highest PCE 

recorded in each year taken from the National Renewable Energy Laboratory (NREL) [16]. 

The structure of the PSCs is classified into two types depending on the nature of the 

transport material. If the electron transport layer (ETL) encounters the light rays first, then the 

PSCs are classified as "Regular n-i-p structures" (or Normal structures). If the hole transport layer 

(HTL) encounters the light first, then it's called an "Inverted p-i-n structure". The basic regular 

PSC consists of an ETL layer deposited on glass (e.g. FTO: fluorine-doped tinoxide). Then an 

absorber layer has a Perovskite structure called an active layer. An HTL and Back Contact. Figure 

2.2 presents the components of a regular perovskite solar cell.  
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Figure 2.1- Highest PCE recorded of PSV every year. 

The active layer (absorbent) of the PSC consists of a perovskite structure materials with ABX3 

form. The A site represents an organic cation, whereas the B site consists of a metallic cation, the 

X site is a halogen anion such as iodide, chloride, or bromide. However, even though the organic 

materials are cheap and easily tunable, although they still struggle with chemical instability against 

environmental factors like moisture, which causes the stability degradation of the device. 

Therefore, many researchers are shifting into using all-inorganic perovskites by replacing the 

organic cation with inorganic materials like Cesium (Cs) due to their potential to be more resistant 

to environmental factors compared to the hybrid organic–inorganic counterparts [49]. Moreover, 

the perovskite materials can be comprised of multi-cation and/or multi-anion compositions. 
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Figure 2.2- Regular n-i-p perovskite structure 

 The ETL layer improves the efficiency of extracting the generated electrons by the 

perovskite active layer. Also, it reduces the recombination of the charges by blocking the hole 

from migrating to the counter electrode. Moreover, the electron transport materials (ETM) can be 

organic or inorganic. For instance, TiO2 is an inorganic material that is widely used as ETL, and 

PCBM (one of the fullerene derivatives, -phenyl-C61-butyric acid methyl ester) is an organic 

material found that it has a better ability of charge extraction than TiO2 in inverted structure PSC 

[50]. 

 In contrast, the HTL collects and transports the hole from the perovskite active layer to the 

electrode to increase the electron-hole separation. Moreover, the highest occupied molecular orbit 

(HOMO) in the hole transport materials (HTMs) should correspond to the valence band of the 

perovskite material to allow hole transport [50]. Similar to the ETM, the HTM is divided into two 

categories: organic, like the widely used spiro-OMeTAD, and inorganic like NiO. Furthermore, 

each layer of material can be doped with organic or inorganic materials to change its proprieties 

for different purposes. 
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However, because the PSC has been developed in the past decade where a huge amount of 

data is being shared on the internet, the effort and time-consuming process of collecting labeled 

data with experiments has been minimized. Nowadays, many different laboratories and research 

teams share their experiment results on different online platforms. Therefore. The fact that the PSC 

devices are progressively developing and the availability of labeled data makes the PSC the most 

appropriate device for ML applications in this research. 

2.2.2 Construction of dataset 
 

 In this chapter, a large dataset containing 377 experimental data samples of regular PSC 

devices was used to train and test different ML and NN models. The data was collected through 

screening several papers that provide the measurement of the PSCs stability degradation under 

various environmental conditions. The majority of this data was obtained from the Perovskite 

Database Project Team [51]. The dataset consists of the materials composed of the PSC device 

layers shown in Figure 2.2. In addition to the temperature, light intensity, relative humidity, and 

atmosphere conditions of the environment where the PSC devices are stored, these features 

represent the inputs for the ML models. Furthermore, the device stability T80 is considered as the 

output for the models. i.e. the value of the stability measured for which the device PCE degrades 

down to 80% of its initial value. 

In particular, the relative humidity values have been classified into three ranges: from 0% 

to 30% RH, 31% to 55% RH, and above 55% RH. The details for this classification are provided 

in the next chapter (section 3.3). Moreover, we will see further that the encapsulation of the solar 

cell may slightly enhance the device's stability. Therefore, because the majority of the PSC samples 

are not encapsulated, we have excluded the encapsulated cells from this analysis to prevent this 
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additional protection (encapsulation) against environmental conditions that may affect the ML 

model. Table 2.1 represents a sample of the dataset used to train the ML models. 

Table 2.1- Perovskite solar cells stability measurements dataset 

Features Glass ETL Perovskite …. Back 

Contact 

 

Target Stability 

(days) Cells 

Cell 1 SLG | FTO PCBM-60 | BCP 

 

MAPbI 

 

…. 

 

Ag 

 

 1 

Cell 2 SLG | ITO TiO2-c 

 

FAMAPbBrI 

 

…. 

  

Au 

 

 18 

Cell 3 SLG | FTO PCBM-60 

 

MAPbI 

 

…. 

 

Al 

 

 13 

Cell 4 SLG | FTO TiO2-c | TiO2-mp 

 

CsPbBrI 

 

…. 

 

Ag | MoO3 

 

 55 

Cell 5 SLG | ITO SnO2-nt FAPbBrI 

 

…. Cu 

 

 15 

 

 

2.3 Materials and Methods 
 

2.3.1 Multilayer Perceptron and Probabilistic Neural Networks 
 

 Multilayer perceptron (MLP) is an implementation of a feedforward type of artificial neural 

network that has at least three layers of nodes: an input layer, a hidden layer, and an output layer, 

and each node has a nonlinear activation function [24].  Hence, it has a significant advantage for 

problems consisting of nonlinearly separable data. The MLP algorithm can be used for both 

regression and classification tasks. 

 Probabilistic Neural Networks (PNN) (also known as Bayesian networks) is a feedforward 

type of artificial neural network derived from the Bayes decision strategy, which utilizes the sum 

of identical isotropy Gaussians to determine the likelihood function of a given class [52]. In 
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particular, the PNN algorithm is used for classification problems which is considered as an 

excellent pattern classifier. Moreover, the PNN uses prior hypotheses to improve the output 

predictions and provides each class with a probability density function (PDF) for each input being 

an element of that class [53]. By using the Parzan estimator, for a class (i) the PDF can be estimated 

as follows: 

Likelihood function for class i is:              𝐿𝑖(𝑥) = (
1

𝑁𝑖
) (

1

(2𝜋𝜎)
𝑘
2

)𝑒−(𝑥−𝑥𝑖)2/𝜎      (4) 

N is the number of the training samples in class i, and k is the dimension of input nodes. 𝜎 is the 

variance of the Gaussians that must optimized during the training process (similar to w and b from 

ordinary ANN). 

And the conditional probability for class i is:   𝑃𝑖(𝑥) =
𝐿𝑖(𝑥)

∑ 𝐿𝑖(𝑥)𝑀
𝑖

       (5) 

Where M is the number of classes. The training process for this type of NN is fairly rapid but can 

require a large set of data. Figure 2.3 shows an example of PNN networks with two classes. 

 

Figure 2.3- Network of PNN. 
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2.3.2 Data pre-processing 
 

 Data pre-processing reflects the process of the manipulation and preparation performed on 

raw data to be tailored in a format appropriate for machine learning applications. It is used as well 

to enhance the ML model performance. However, there are several different techniques used for 

preprocessing data. For instance, data cleaning, transformation, imputation, feature scaling 

(standardization, normalization, etc.), feature selection, etc. 

 Foremost, we have performed a manual exploration of the dataset to uncover the initial 

patterns, check missing values, and correct typing mistakes. Also, we have organized the data in 

the form of a table (matrix), in which the rows represent a sample of solar cells and the columns 

represent the data features (e.g. ELT layer, temperature  ...etc.) as shown in table 2.1. Practically, 

in all cases, the material dataset contains missing data that are not provided from the original work. 

For example, some of the papers from which the data was collected did not mention the 

environmental temperature or humidity. This missing data in the dataset often creates a huge 

problem for the ML model. Hence, it is crucial to handle the missing values. Generally, there are 

two ways to solve this problem: 

-Deleting the particular sample: This method is used commonly to handle the null values, or 

sometimes it is used when one sample contains several missing values. 

-Calculating the mean: This method is based on calculating the mean of the column where the 

missing value is, then replacing the missing value with the mean value of that column. For 

example, a sample has an unknown temperature. In this way, we calculate the mean value of all 

the temperatures existing in the dataset and then replace the missing value with the mean value. 

This method is widely used and very useful for features that have numerical values. 
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 However, we adopted a different approach for preserving the maximum of the data. Based 

on the fact that this dataset consists of experimental data conducted within laboratories. Hence, we 

assumed that the missing data for the stability degradation measurements was taken under ambient 

conditions. Moreover, usually, if there are any changes from ambient conditions it will be notified 

in the published paper of the concerned work. Therefore, we have compensated the temperature 

and humidity values with 25 oC for the temperature and 0%-30% RH for the humidity. 

Furthermore, the ML algorithms work completely with mathematics and receive only 

numerical values as input. Hence, we have encoded the features containing characters by creating 

a sparse matrix of binary columns, and each category (element) is represented by a binary value. 

i.e. replaced by 1 if that category exists and 0 if not. This process was done using OneHotEncoder 

(OHE) from the Scikit Learn library [38]. The reason for choosing this approach instead of other 

approaches (e.g. Label Encoder which replaces a category by a random number) is the attempt to 

neutralize the ordinal relationship between the substitute variables. However, after the encoding 

step, the dataset consists of binary data that represents the materials components and other 

numerical data like temperature and light intensity which scale much bigger than the binary values. 

This margin provokes the bias phenomena which means that the features with large values 

dominate the model. Therefore, to ensure that all the features contribute correctly we used 

standardization via scaling to unite variance in order to put the variables in the same range. The 

standard score of sample i is calculated as follows: 

𝑖′ =
(𝑖−𝑢)

𝑠
      (6) 

Where i’ is the standardized value of i, u represents the mean of the training samples, and 

s is the standard deviation of the dataset. By applying this method the data can be transformed to 
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a more consistent scale and prevent the bias phenomena from occurring, also it makes the 

regression models learn the patterns from the data easier. Figure 2.4 illustrates both the encoding 

and standardization processes. 

Finally, the dataset was divided into two subsets. 85% of the data was directed to train the 

ML models, and 15% for testing the models. Note that each one of the training dataset and the test 

dataset consists of an input and output pair {x, y}. 

 

Figure 2.4- Data encoding and standardization processes. 

2.3.3 Model configurations 
 

 This chapter aims to perform multiple machine learning experiments to identify the 

optimum model for our material dataset. However, this process requires choosing the optimal 
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parameters that make the learning algorithm correctly map the input features to the output. 

Generally, the parameters that control the learning process and the resulting model parameters are 

called Hyperparameters. For instance, some common hyperparameters we have: optimization 

algorithm, the activation function in case of NN, the choice of the loss and cost functions, etc. 

However, the common method for choosing the optimum hyperparameters is by modifying 

the values of different parameters and repeating the experiment until the best results are obtained. 

Therefore, we used a technique called GridSearchCV from Scikit Learn for this purpose. In 

particular, GridSearchCV performs hyperparameter tuning to determine the optimal value by 

processing a given set of parameters in the form of a grid. Moreover, GridSearchCV applies every 

combination possible of the parameters in the grid, then it uses an internal cross-validation 

technique to calculate the score for each combination. The bigger the score obtained the better that 

combination of hyperparameters. Figure 2.5 illustrates the steps of hyperparameter tuning used by 

GridSearchCV. 

 Depending on the previous approach, the optimal hyperparameters of each of the SVM and 

MLPRegressor algorithms are found as follows: 

-SVM: -The kernel type: Radial Basis Function 

-The degree of the polynomial kernel functions = 1 

-MLP regressor: -The number of hidden layer = 5 

     -The number of neurons in the ith hidden layer = 200 

     - The number of iterations of the training process = 200  
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Figure 2.5- Hyperparameter tuning by GridSearchCV 

However, in the case of the PNN algorithm, a different approach was implemented. Given 

the specific structure of this algorithm, we have used a library from tensorflow [55] for the 

probabilistic calculations to make the prior and posterior functions. Then, it is employed in the 

standard algorithm of Neural Networks. The hyperparameters of the NN are as follows:  

-The loss function is Mean Square Error (MSE):         𝑀𝑆𝐸 =  
∑(𝑦𝑖− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)

𝑛
      (7) 

Where y is the correct output and n is the number of total outputs. The Root Mean Squared 

Propagation (RMSprop) was used as an optimizer, and the learning rate = 0.0001. 

 Furthermore, to develop the proposed experiment, the life cycle of the models can be 

summarized as follows: (i) tuning the model hyperparameters using the GridSearchCV algorithm, 
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(ii) compiling and training the model, (iii) using the test set to assess the model accuracy, (iv) use 

the model to make new predictions. However, we used the same training set and test set to train 

and evaluate all the models to ensure fair comparison analyses.  

2.4 Results and Discussion 
 

 The test dataset contains 55 experimental data samples. However, to assess the model's 

performance concerning our PSC dataset, we have plotted the stability at T80 from the test dataset 

along with each model prediction. Knowing that the same inputs from the test dataset were used 

to make the predictions for all the models. The resulting curves are illustrated in Figures 2.6, 2.7, 

and 3.8. where the blue curve represents the real values and the red curve represents the model's 

prediction results. 

 Table 2.2 contains the accuracy score of each algorithm. The accuracy was calculated by 

using: the training set and then by using the test set. Moreover, the Metric and Score library from 

Sklearn was used for this calculation, this algorithm is based on a cross-validation algorithm that 

computes the accuracy score by using the fraction of correct predictions method which can be 

expressed by the following function: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑦, 𝑝𝑟𝑒𝑑) =  
1

𝑛
 ∑ 1(𝑝𝑟𝑒𝑑𝑖 = 𝑦𝑖)

𝑛−1
𝑖=0     (8) 

 

Where predi is the predicted value of the i-th sample and yi is the corresponding real value, n is the 

number of samples. 
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Table 2.2- Stability prediction accuracy of PSCs from different ML models. 

Algorithms 

Test dataset prediction 

accuracy 

Training dataset prediction 

accuracy 

SVM regressor 17% 24.78% 

MLP regressor 

PNN 

63.1% 

70.17% 

71% 

81.24% 

 

 As we can note from Figure 2.6, the SVM algorithm precision was very low. From Table 

2.2, this model perform only 24.78% in the case of training data prediction, and only 17% of the 

test data was predicted correctly. However, the SVM model in this case is considered a very simple 

model, which is based on a linear polynomial function to fit the input with the output. Regardless 

that this function was found the best method by using GridSearchCV, the SVM technique can 

apply the kernel trick to transform the data from the original space to another feature space which 

can help the algorithm to solve more complex problems [57].  However, as we have seen in the 

previous chapter (section 1.2.3-support vector machine), the kernel trick requires much more 

training data to produce better results. In particular, the main reason for this poor performance of 

the SVM algorithm is due to the quality of the dataset. The datasets based upon the material data 

are generally considered very heterogeneous and nonlinear separable. Moreover, the SVM 

algorithms will underperform in the case when the number of descriptors (features) is around or 

higher than the number of data samples [57]. In our case, in the preprocessing stage, the OHE 

transforms the 387 material types from the dataset to features. Hence, the results of this operation 

produced 391 features (the material types + the environmental conditions) against 377 data 
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samples which guarantees the SVM model's underperformance. Furthermore, during the manual 

exploration of the data, we noticed that there is some noise in the data, which some PSC devices 

contain the same structure and environmental conditions but different stability. Therefore, the 

SVM algorithm doesn't perform well in case the dataset contains much noise [57]. 

 

Figure 2.6- Comparison between the stability predicted using the SVM model against 

experimental values. 

 Figure 2.7 shows that the multilayer perceptron regressor performs much better than SVM. 

From Table 2.2, the MLPRegressor accuracy is 71% for the training data and 63.1% for the test 

data. Hence, the growth of the accuracy was 46% for both test and training sets. However, in the 

case of the Neural Networks algorithms, the hyperparameters of these kind of models is quite hard 

to optimize [56]. Even though the dataset contains noises, the MLPRegressor gives relatively good 

results. However, this performance enhancement may due to the fact that the Neural network 

models are usually addressed for nonlinearly separable data [58] which is the case of our problem. 
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 In particular, the reason behind the gap between the real values and the predicted values 

may be due to that the input features used in this work do not represent adequately the relationship 

between the input and the outputs. Hence, the MLP model cannot extract sufficient information 

from the training data. Moreover, the size of the dataset and the noise in the data also cause a 

degradation of the model performance. In general, the NN models are considered as a black box 

and it is not human interpretable. Simply, it is very hard to know why or how this model produces 

a specific output. 

 

Figure 2.7- Comparison between the stability predicted using MLP regressor against 

experimental values 

 Figure 2.8 shows that the curve of the stability predicted value is nearly identical to the 

curve of the real values. Which makes the PNN behalf as the best model compared to the two 
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previous models. The probabilistic approach added to the neural networks can empower the model 

to handle much better the uncertainty in the dataset caused by insufficient information and the 

noise in the data [40]. Moreover, this model can learn better from small-size datasets compared to 

artificial neural networks. Table 2.2 illustrates that the PNN model gives the highest accuracy both 

for the training set and test set, which scores 81.24% in the training data and 70.17% in the test 

data.  However, the results of this model are also considered probabilistic, which means that the 

same inputs may produce a slightly different output. In fact, this feature can be considered as an 

advantage and disadvantage at the same time. Obviously, a model that sometimes gives different 

outputs from the same inputs is considered a bad model. However, from an analytic perspective, 

this behavior suggests that the output is unlikely correct. So it is better to get "I don't know" from 

the model rather than getting a misleading prediction. 

 

 

Figure 2.8- Comparison between the stability predicted using PNN against experimental values 
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2.5 Chapter summary and outlook 
 

 In this chapter, we have identified three ML/NN algorithms: SVM, MLP, and PNN, which 

were used for the prediction of the PSC device stability. The objective of this experiment was to 

compare various ML/NN techniques in order to pick up the most appropriate one for our problem. 

In particular, the advantages and disadvantages of these techniques can be summarized in Table 

2.3. In conclusion, based on the results obtained, the neural network algorithms are considered 

advisable for the assigned task. The probabilistic neural networks give higher accuracy compared 

to the MLP neural network algorithm. However, the PNN has a critical limitation in usage. It is 

used only for classification tasks. This obliged us to classify the dataset into many classes so that 

we could compare it with the other techniques. Although this method is not practical for regression 

tasks.  In this context, the SVM shows a poor performance when it comes to heterogeneous data. 

However, the observation of this experiment gives some conclusions:  

It was found that the methods of the preprocessing stage are specific for each algorithm. 

This means that if a specific method worked for one algorithm, it cannot be generalized for all the 

algorithms. For example, encoding the categorical data with OHE usually gives good results in the 

case of NN algorithms, but we have seen that it causes an underperformance for the SVM 

algorithm, notably in the case when the number of categories is large.  

Furthermore, the uncertainty and noise in the dataset can underperform the ML/NN 

models. Therefore, the problem of handling noise in prediction applications needs to be 

investigated further. 
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Table 2.3- Advantages and disadvantages of the ML/NN algorithms used in this chapter. 

Algorithms Advantages Disadvantages 

SVM  SVM is effective in high-dimensional 

space. 

 SVM is a relatively memory 

systematic 

 SVM can model nonlinearly separable 

data by using the kernel trick 

 SVM does not perform well when the dataset has 

noise. 

 SVM will underperform if the number of features 

exceeds the number of data samples. 

MLP  Can easily work with nonlinearly 

separable data.  

 MLP is relatively easy to train 

 It is more robust to noise. 

 Too many parameters need to be optimized. 

 The high number of fully connected nodes results 

redundancy and inefficiency. 

 Large NN is Computationally costly. 

PNN  Much faster. 

 More accurate compared to MLP and 

SVM. 

 Very robust to noise. 

 Requires much more memory space. 

 Slower than MLP in case of classifying new 

classes 
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Chapter 3. Combined machine learning techniques for 

analyzing the back contact influence on the stability of 

perovskite solar cells 
 

3.1 Introduction 
 

 Even though the power conversion efficiency of the perovskite solar cells has achieved 

significant progress in recent years. Nevertheless, the problem of the stability degradation of the 

device remains a dilemma, this degradation occurs mainly due to the contact of the device layers 

with H2O [60]. Therefore, many researchers have tried to mitigate this phenomenon through 

different approaches. In this context, improving the stability of the electrode contacts can enhance 

the overall device stability. This enhancement can be done by the adoption of different material 

compositions for the back and front contacts [61]. However, most of the research that adopts this 

approach are using the trial-and-error method [29]. This means that this research relies on the 

production of a variety of PSC devices with different electrode contact components, and then 

measuring the extent of the stability degradation of these devices. However, this approach is very 

expensive and time-consuming due to the large options of materials [29]. Furthermore, many 

research papers provide different ML approaches for predicting stability using new materials [62, 

63, 64]. 

 Recently, many researchers have shifted to using ML techniques in the design of solar 

cells and resolving the stability problem. For instance, J. Schmidt et all used a number of machine 

learning techniques with Density Functional Theory (DFT) to predict the thermodynamic stability 

of perovskite materials [65]. Ç.  Odabaşı and  R.  Yıldırım analyzed different back contact 
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components of 404 PSCs samples by using the Decision trees and association rules Apriori 

algorithms [60]. However, using a single decision tree cannot fit heterogeneous data and mostly 

leads to overfitting problem [66]. 

Therefore, in this chapter, we have used two ML techniques of eXtreme Gradient boosting 

(XGBoost) and MLP, we have applied the XGBoost algorithm for analyzing the effect of the back 

contact on the stability, along with MLP Regressor to predict the PSC device stability with 

different back contact components. This chapter aims to determine which is the best material 

employed in the back contact to enhance the PSC device stability. 

In particular, this chapter is organized as follows: we will first explore the XGBoost 

technique and describe the dataset used in this chapter. Then, the preprocessing stage and 

hyperparameters tuning are revealed. Further, the obtained results are presented in the Results and 

Discussion section. Finally, we have provided a recommendation for which back contact 

compounds can enhance the PSC device stability, and finish with a conclusion. 

3.2 Materials and Methods 
 

3.2.1 Extreme Gradient Boosting (XGBoost) 
 

 eXtreme Gradient Boosting is considered a framework that implements the Gradient 

Boosting algorithm [67]. However, XGBoost is a scalable end-to-end tree boosting system 

available as an open-source package in the following link: https://github.com/dmlc/xgboost. 

Which distributed a Gradient-Boosted Decision Tree (GBDT) machine learning library. Basically, 

XGBoost is based on supervised machine learning which can be used for regression, classification, 

and ranking problems. 

https://github.com/dmlc/xgboost
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 Moreover, XGBoost is one of three ensemble learning algorithms used in this research 

along with Extra Trees and Random Forest. The ensemble learning algorithms combine multiple 

algorithm predictions to obtain a better model. XGBoost, ET, and RF all consist of multiple 

decision trees, the difference is in how the trees are built and the predictions are made. Figure 3.1 

shows the difference between an ensemble tree algorithm and a single decision tree algorithm. 

Figure 3.1- Difference between a single decision tree algorithm and a decision tree ensemble 

algorithm. 

 In the case of tree-boosting algorithms, the final prediction is calculated as the sum of the 

predictions for each tree. For example, given a dataset contains n examples with m features {(xi, 

yi)}, the model uses the sum of k functions to predict the output as described in the following 

equation: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 =  ∑ 𝑓𝑘(𝑥𝑖)𝑘
𝑘=1      (9) 

Each fk corresponds to a specific tree structure. 
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 However, XGBoost has achieved significant results in many applications. For instance, 

Kaggle published the results of a machine learning competition in 2015. Interestingly, among the 

29 winning solutions, 17 solutions used XGBoost. Moreover, among these solutions, nine of them 

used XGBoost combined with neural networks algorithm [67]. An example of problems solved in 

this event: high energy physics event classification, and product categorization. 

3.2.2 Dataset Description 
 

 The dataset used in this chapter contains 140 different material configurations of a regular 

structure PSC. Also, it provides the stability T80 for each device collected from previous 

experimental research. This dataset was collected manually by C.Odabas and R. Yildirim [60]. 

However, in the next chapter, we will see that the environmental conditions of the PSC devices 

are very effective on the device stability degradation if exceed the ambient conditions. Therefore, 

we have already deleted the samples that are stored in extreme environmental conditions. This 

criteria could certainly neutralize the effect of the temperature and humidity on the device stability 

which allows to analyze only the influence of the materials involved in the back contact. 

 The ML model inputs are the materials constituted by the different PSC layers. Where the 

output is the stability for which the cell preserved 80% of its initial PCE. 

3.2.3 Data preprocessing 
 

 In the material dataset, the manual exploration of the data is a long process but it is 

necessary to organize the dataset and to correct the typing mistakes. For example, if the same 

component of the perovskite active layer was written differently (e.g.: FAMAPbI2 with FA-

MAPbI2), in this case, the ML algorithm will classify it as two different components. Therefore, 
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each category must be written in the same way. Also, an extra space which often overlooked causes 

categorical mistakes. Hence, the material datasets should be well examined for ML application. 

 However, to ensure the effectiveness of the data, a different preprocessing method was 

used. The categorical features were converted to numerical values by using the scikit learn library 

of LabelEncoder. This method encodes a categorical label into a value between 0 and n – 1, where 

n is the number of the categorical labels. However, Scikit Learn announced that this method should 

be used to encode only the target values, i.e. encode y rather than the input x. Nevertheless, using 

this method to encode the inputs in this chapter solves the problem of the categorical features 

without affecting the performance of the model heavily. It is also widely used for this purpose. We 

avoided using OneHotEncoder due to the large number of categories existing in this dataset, which 

will significantly increase the dimension of the dataset. 

 Finally, we have divided the dataset into two subsets. A subset contains 80% of the total 

data to train the machine learning models. The remaining data was used to test the models. 

3.2.4 Solution approach 
 

 The objective of this chapter is to enhance the PSC device stability by finding the 

appropriate material component of the back contact layer. Therefore, we have adopted two 

approaches: 

 First, we have investigated the influence of the back contact on the total stability of the 

PSC device. Hence, we can evaluate the improvement of the device stability that can be obtained 

by using adequate material in the back contact. This process was achieved by using the feature 

importance technique from XGBoost. This technique is one of the benefits of using ensembles of 

decision trees, which can estimate how the importance of a feature is relative to the target (in this 
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case, the device stability). However, the importance of the feature importance technique can be 

calculated with three different importance metric as follow [68]: 

-The coverage metric: is the number of observations related to a specific feature divided by the 

total observations. For example, we have a set of observations and 3 decision trees, the input 

contains 10 features, and suppose one feature is used to form a leaf node with 10, 8, and 5 

observations for tree1, tree2, and tree3 respectively. Then the cover metric will calculated for this 

feature as follows: 10+8+5=23, in the same way the cover metric of the other features will be 

calculated. The importance score is the percentage of 23 overall feature cover metrics. 

-The frequency/weight: is the percentage of the number of the appearance of a specific feature in 

all model trees. For example, if a feature occurs in 5 splits in tree 1, and 2 splits in tree 2, the 

importance is calculated as the total weight of this feature overweights all features:     

importance =  
5+2

𝑡𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡
 

-The gain: is the relative contribution of a specific feature to the model, it’s calculated by taking 

the contribution of each feature for the model trees, as shown in the following equation: 

Breiman et all proposed [69], for a single decision tree T:  

𝑇𝑙
2(𝑇) =  ∑ 𝑖𝑡

2 𝐼(𝑣(𝑡) = 𝑙)
𝑗−1
𝑡=1       (10) 

The sum is calculated over j-1 nodes of the tree. For a t node, one of the input features is associated 

with splitting that node into two subregions (nodes or leaf), the chosen feature is the one that gives 

maximal estimated improvement. The XGBoost model generalizes the method above across all 

the trees used in the ensemble and then calculates the average. However, this type of feature 



60 
 

importance is the most indicative of the contribution of a feature relative to the target. Hence, we 

have used the gain type of feature importance. 

 The second approach is based on choosing a specific PSC structure, and then predicting 

the stability of this device several times while changing the back contact component. The back 

contact material of the highest device stability is considered an adequate candidate for enhancing 

the device stability. However, to achieve more reliable results, we have repeated this process with 

five different PSC structures. This operation was done by using the MLPRegressor algorithm. 

3.3 Results and Discussion 
 

 The evaluation of the performance of the two models was calculated over the test set by 

using the cross-validation technique from scikit learn, the method for estimating the accuracy is 

MSE. Furthermore, the XGBoost accuracy is 70.6%. The evaluation of the MLPRegressor 

algorithm gives 85.39% of accuracy. However, this increment of accuracy between XGBoost and 

MLPRegressor models is due to the type of the dataset used, the material dataset is considered 

highly heterogeneous which gives the advantage to the neural networks algorithm. Moreover, we 

have traced the learning curve of each algorithm in Figure 3.2 by using the Learning Curve class 

from the Scikit Learn library. Which is a diagnostic tool in ML that represents the model 

performance changes during the learning and test process by using cross-validation to split the 

training set 5 times, and the score of each subset was computed. 

 Figure 3.2-a shows that the training score is relatively much higher than the test score, 

which means that the XGBoost model overfits the training data. In particular, it is expected due to 

the fact that the pattern in our dataset is too complex which increases the variance. However, the 

curve test shows a progressive increment in terms of accuracy whenever the number of data 
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samples used to train the model increases. This means that the larger the dataset is, the better the 

model performance. Moreover, the overfitting phenomenon is a problem for a predictive study of 

new materials, but it is unlikely to affect the feature importance technique because it is based on 

computing the training data. 

 From Figure 3.2-b, we can conclude that the MLPRegressor is pursuing a good learning 

process, in which the accuracy of the training set is relatively close to the accuracy of the test set. 

In general, after the training process, the results of feature importance are shown in Figure 3.3, 

which indicates the influence of each PSC layer on the total device stability. 

 

Figure 3.2- Learning curve of: a) XGBoost. b) MLPRegressor 

 

 Figure 3.3 shows that the electron transport layer (ETL) affects the device stability by 19%, 

with the added ETL second layer, the effect becomes 33.8% (19% from ETL plus 14.8% of ETL-
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2) which is a significant value. Nevertheless, we will investigate the influence of all different layers 

in the next chapter by using a more decent dataset with a different approach. However, the 

influence of the perovskite active layer the hole transport layer (HTL), and the HTL additive layer 

are 17.5%, 19%, and 14.7% respectively. The back contact affects 15% of the total device stability. 

In accordance, many experimental studies show that using different back contact materials leads 

to a significant change in the device stability. For example, F. Behrouznejad et al. proved that by 

using different materials as Back contact, Platinum (Pt) provides better stability compared to other 

materials like Silver (Ag), Copper (Cu), Nickel (Ni), and Chromium (Cr), in fact, the device shows 

improvement in the performance and stability due to the relatively high work function of Pt [70]. 

Moreover, Farhadi et all found that using the metal component as back contact minimizes the layer 

defects and the influence of the temperature on the PSC performance, which helps to improve the 

electrical characteristics and the stability of the device [71]. Similarly, Ç. Odabaşı and R. Yıldırım 

have found by using the ML techniques of association rule mining that the back contact is an 

important factor concerning stability [60]. 

Figure 3.4, shows the prediction of the stability for five different PSC devices, each device 

has a different perovskite structure, for example; multianion perovskite (MAPbI3-xClx), 2D/3D 

perovskite (CsPbI3-EDAPbI4), etc. Furthermore, the stability of each device was predicted by 

using six different back contact materials. The back contact materials used in this study are: Silver 

(Ag), Silver-Aluminum (Ag-Al), Gold (Au), Multi-Wallet Carbon Nanotube (MWCNT), Carbon, 

and Graphene. These are all the back contacts available in the dataset. 
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Figure 3.3- Percentage of the important score of the PSC layers 

 Figure 3.4 clearly shows that the stability increases when using MWCNT, carbon, and 

graphene. However, all these components are carbon allotropic forms. The reason for the 

enhancement of the device stability when using carbon alternatives may be due to the nature of the 

carbon, which is a hydrophobic material. In particular, the H2O strongly decreases the device 

stability mainly due to the presence of a liquid electrolyte [46, 47, 60]. Hence, using carbon as a 

back contact may protect the different interlayers from the risk of exposure to the water [72].

 Moreover, figure 3.4 shows that Au gives a high stability for the MAPbI3 structure with 

spiro-MeOTAD as HTL, the predicted stability value is 358 days. Indeed, by searching nearly the 

same structure, the real experimental value found in the dataset was 360 days. However, this 

finding cannot be generalized because it is only a single case (shown in the green curve), while the 
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other cases did not show a good stability. In particular, F. Behrouznejad et al. demonstrated that 

Au is the most suitable metal for use with spiro-OMeTAD [69].  

 

Figure 3.4 –MLPRegressor prediction for different material compounds of back 

contact. 

 

3.4 Conclusion 
 

 In this chapter, we applied two different ML techniques of XGBoost and MLP on 140 

experimental data samples of PSC devices. Our objective was concerned with enhancing the PSC 

device stability by using an adequate material as a back contact electrode. The XGBoost algorithm 

was used to estimate the influence of different PSC layers on the total device stability. Where the 



65 
 

MLPRegressor algorithm was used to predict the stability of different PSC devices with different 

back contact components. The results of both algorithms have been validated by using previous 

experimental published works. We have found that the back contact materials that are robust to 

environmental conditions significantly enhance the device's stability. Further in this research, the 

proposed approach will be enriched with more experimental data. Furthermore, it is possible to 

examine more layers with the aim of optimizing the entire device structure. 
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Chapter 4. Machine learning solutions for perovskite solar 

cells stability enhancement 
 

4.1 Introduction 
 

 The stability degradation of the PSC remains the main issue that prevents the successful 

commercialization of this solar cell technology. Therefore, in this chapter, we intend to investigate 

the different factors that affect the device stability by using ML techniques of Extra Trees (ET) in 

an attempt to understand the degradation process of PSCs under different conditions and propose 

a solution to achieve high long-term stability for the PSC devices. Furthermore, the ET algorithm 

is used to analyze a large set of experimental data with 1050 data samples containing the material 

compositions of the PSC, the deposition methods, deposition solutions, and the environmental 

conditions. However, we avoided using neural network algorithms in this study due to their nature, 

which makes a quite impossible to understand the reason behind the outcome of these algorithms, 

and are not interpretable. Conversely, the algorithms based on decision tree gives many 

information that helps to understand the data.  Moreover, the ET is usually preferable -in this case- 

compared to the previous techniques, which use the majority voting of decision trees to produce 

the final outcome, resulting much faster model, also the randomization of this algorithm decreases 

the variance of the model which eliminate the overfitting [65, 73]. However, due to the vast 

different factors involved in the PSCs manufacturing process, we are employed to analyze the most 

important factors related to the stability. The features that are relevant to the device stability were 

extracted using the feature importance algorithm from ET, while the different factors were 

investigated by using the ET classifier algorithm. 
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 This work is structured as follows: at first, we will explore the dataset. Then, we are going 

to identify the Extra Trees technique and show the various steps of the preprocessing stage. 

Further, we will investigate the effect of environmental conditions on the device's stability by 

taking samples from the dataset. The results of the machine learning will be analyzed and 

compared with previous experimental works in the results and discussion section. Finally, we will 

propose an optimized device structure and predict its stability using an ET regressor, and finish 

with a conclusion. 

4.2 Materials and methods 
 

4.2.1 Dataset Construction 
 

 The dataset used in this chapter was collected from previous works by reviewing 

experimental data about PSC stability. However, the data was collected manually respecting 

several criteria: the cells under extreme environmental conditions like strong light intensity or high 

temperature were ignored, also the data should provide the stability T80 of the PSC device, the 

data should contain the different layer components, the different technique used in the device 

production, and the environmental storage conditions. Most of the dataset was collected from 

reviews articles [29, 60, 74,75,76], and the Perovskite Database Project [51]. Furthermore, this 

dataset contains 30 different features related to the device manufacturing and proprieties including: 

the cell architecture, the ETL and ETL second layer components and deposition procedure, the 

ETL thickness, the perovskite composition and thickness, the perovskite deposition steps and 

procedures, the deposition solvent and quenching media, the HTL and HTL-2 component and 

thicknesses, the HTL deposition solvent and procedure, the back contact component and thickness, 

storage light intensity, humidity, and atmosphere. Compared to the previous chapter's dataset, this 
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dataset contains much extended number of features which helps to cover the majority of the factors 

that affect the device stability. Moreover, these features are the input for the ML algorithm, while 

the output is the stability of the cell. 

4.2.2 Extra Trees 
 

 Extremely Randomized Tree (Extra Tree) is a tree-based ensemble method for supervised 

machine learning that can be used for classification and regression problems. The implementation 

of this technique was given by Pierre Geurts et all in 2006 in their paper entitled “Extremely 

randomized tree”. Despite that, the main implementation for this technique in this paper was to 

process numerical values, although it can be adapted to process categorical values. The trees 

created by this technique are totally randomized and their structure is independent from the target 

values of the training samples. i.e. an ensemble of unpruned (de-correlated) decision trees [73]. 

However, the two main differences between ET and the other techniques that are the ET 

uses all the learning samples to grow the trees, and it uses the cut-points totally at random to split 

the nodes [73] which has a significant variance reduction effect (degrease the model overfitting). 

The final prediction is calculated by the majority vote in case of a classification problem, and the 

arithmetic average in case of a regression problem. 

In particular, from the paper that introduced the ET model, all the 12  problems analyzed 

using different tree based models show that the ET has a lower variance (less overfitting) but a 

relatively high bias. The paper explains that due to the randomization in the algorithm which 

includes the irrelevant features in the model. Therefore, we intend to exclude the irrelevant features 

during the preprocessing step to ensure that we obtain the best performance of the model. However, 

the ET is considered an "in the clear" algorithm, which means that all the computations are done 
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in the form of plaintext and clear operations rather than a black box which is the case in the fully 

connected nodes in the neural networks algorithms. So, let’s have a little bit of a sense of how this 

method works, as this will help us to understand the relationship between our data and the stability 

of the device. 

Considering the number of numerical input variables and two categorical target variables, 

the ET algorithm will build the DTs as follow: 

Step 1: pick a random split 

To build a decision tree, the algorithm chooses randomly several features without 

replacement at each node, the number of features picked is denoted k, and the minimum sample 

size for splitting a node is denoted nmin, for example: a dataset (S) contains numerical variables 

with Ai attribute, i∈ {1, 2, … . , 𝑁}, and two classes red and blue. 

A1 A2 … Ai Target 

1.8 1.5 … 1.0 red 

2.1 2.8 … 3.6 blue 

4.0 1.1 … 1.3 blue 

2.2 3.9 … 2.8 red 

3.1 1.7 … 4.1 red 

1.2 2.9 … 3.1 blue 

 

Suppose that k=2, and the algorithm chooses A1 and A2. Then, compute the max and min values 

in each feature in S, denoted amin, amax respectively. Draw a cut-point (threshold) ac between [amin, 

amax], in our example, let’s suppose that the thresholds are 2.2 in A1, and 2.8 in A2. Then return a 

split [a<ac]. 

Step 2: Build an Extra Tree: 
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The stopping condition: the algorithm will return an output –build a leaf- (class frequencies in case 

of classification or average output in case of regression) if the subset is smaller than the minimum 

sample size nmin, or if the learning samples or the output variables are constant in S. Otherwise, 

the algorithm will split S into two subsets (denoted Sl and Sr respectively) based on the cut-point. 

Our example S becomes: 

For the A1 cut-point: 

For A2 cut-point: 

Note that in the first split, the dataset contains only the rows where A1 values are less than the 

threshold (2.2), the same thing in A2 split. However, the subsets aren't required to be the same size. 

Now the algorithm will compute the best feature split that describes the data by using a quantifiable 

metric, there are several methods to calculate the score of how meaningful the split is in the dataset. 

In this work, we have chosen the Gini index. 

The Gini index represents the probability of a sample picked randomly to be misclassified. 

This means that the lower the Gini index is, the lower the chance of an instance being incorrectly 
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classified. Moreover, the value of the Gini index is between 0 and 1. The formula of the Ginin 

index can be written as follows: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃(𝑗)2𝑗
𝑗=1       (11) 

j represents the number of the class in the target variable (j=2 in our example). Where P(j) 

represents the ratio of the pass/total number of observations (learning samples) in the node. Given 

this definition, the weighted sum of the Ginin index can be calculated as follows: 

𝐺𝑖𝑛𝑖 =  1 − ∑ ( 
𝑆∗

𝑆
2
1  (∑ 𝑃∗,𝐽

2𝑗
1 ))    (12) 

S* represent the two subsets {Sl, Sr}. Therefore, the sum is from 1 to 2. Let’s calculate the gini 

index for our example: 

𝐺𝑖𝑛𝑖(𝐴1) = 1 − (
3

6
 ((

1

3
)2 + (

2

3
)2 +

3

6
((

2

3
)2 + (

1

3
)2) = 0.45 

In this example, the subnode has 3Pass and 3Fail, in the 3Pass samples, the number of red class is 

1/3, and the blue class is 2/3. Suppose that the same calculation was done for A2 and gives the Gini 

index = 0.55. In this case, the ET algorithm will consider the split 2.2 of the feature A1 as the best 

description for the data, and create the child node based on the subsets created from this split. The 

right child node has Sr subset, and the left child node has Sl subset. 

The ET classifies the new data by comparing the current sample value in the A1 feature with the 

cut-point, then this sample travers the sub-tree depending on its A1 value in which the subset 

belongs, and then it continues recursively to fulfill all the similar criteria till reaching the stopping 

condition an build a leaf node. However, in this example, the ET algorithm will compute the 

majority vote of all the decision trees to produce the final classification. The pseudo-code of the 

ET algorithm is described in Table 3.1 
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Table 3.1: Pseudo-code of the ET algorihtm 

Input: a training set S with A features and n samples. 

Output: an ensemble of trees with M tree, T=t1, …,tM 

Build_Extra_Tree(S): 

    If S<nmin or sample are constant in S or feature values are constant in S: 

       Return: a leaf labeled (by class frequency in case of classification, by average output in regression) 

    Else: 

       1-Select k features randomly without replacement in S. 

       2-Generate k splits S*, where S* = Pick_random_split(S, Ai) 

       3-Select a split such has the best description of data using a scoring function 

       4-Split S into two subsets Sl and Sr based on the previous test 

       5-Build sub tree tl = Build_Extra_Tree(Sl), tr =  Build_Extra_Tree(Sr) 

       6-Create a node that attaches tl and tr as the left and the right sub-tree of this node 

       Return: the resulting tree t 

Pick_random_split(S, Ai): 

       1-Find amin and amax in S 

       2-Choose randomly a cut-point within the range of [amin, amax] 

        Return: the split [a<ac] 

 

4.2.3 Data Preprocessing 
 

 The preprocessing step is extremely important in this chapter because the model learning 

process is directly impacted by it. Constantly, we start with the manual exploration of the dataset 

to class the categorical data appropriately under different categories and delete the data that has 

many missing values. However, this dataset contains 30 features which may cause a reduction of 

the model performance both in speed -due to the high dimensionally- and in accuracy -due to the 

redundant and irrelevant features that may create bias- [77]. Therefore, we have used the feature 

selection method to reduce the number of features and delete the irrelevant ones. The advantages 

of this method are schematized in Figure 4.1.  

However, feature selection is considered one of the major problems in ML. This method 

aims to select the most important and non-redundant features to use in the model learning process 

without losing information [78]. Furthermore, it is used to make the model easier to interpret by 
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researchers, make training faster, decrease the impact of the high dimensionality curse, and 

enhance the compatibility of data with the model [79]. 

 

 

 

 

 

 

 

Figure 4.1-The advantages of the features selection process 

In this chapter, this process relies on four steps: Encoding the data, Normalization, 

Imputation, and feature extraction, as shown in Figure 4.2. 

The categorical data was encoded by using LabelEncoder from the Scikit Learn library. In 

particular, we used LabelEncoder just for feature selection, in the ML analyses we used 

OneHotEncoder to encode the categorical variable in order to transform the different PSC 

components into features to facilitate the analyses, we will discuss the approach used in this work 

further in this chapter. Moreover, to increase the learning speed and facilitate the convergence of 

the model we have used the normalization method to reduce the value of the encoded variable to 

a common scale. To retrain the maximum of the data, we used a simple imputation method from 

Scikit Learn to replace the missing data with an arbitrary category in case of a categorical feature 

or a constant number in case of a numerical feature. 
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Figure 4.2- Feature selection process 

 The feature selection is considered supervised if the extracted features are selected based 

on the output variable, and unsupervised if not [80]. In particular, the feature selection can be 

applied by using two different methods; Wrapper methods, or Filter methods. The wrapper method 

consists of creating multiple models by using different subsets with removed features, this method 

keeps adding and removing features until finds the optimal combination, then choosing the features 

from the subset that result the best performance [80]. The filter method uses a statistical technique 

to compute a score that indicates the relevance between the features and the target and chooses 

only the features that fulfill some criterion. However, in this work, we have used the filter method 

by applying the Gain metric of importance score and choosing the features based on a threshold 

score. 

 Subsequently, we have divided the dataset into two datasets based on the structure of the 

PSC device, the first dataset contains 723 data samples of regular structure PSC, and the second 

contains 327 data samples of inverted structure PSC. Each one of these datasets was divided 

randomly into 80% of the data to train the model, and 20% of the data to test the performance of 

the model. However, we have used random train/test split to distribute the data uniformly and 
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prevent model overfitting. As a result, the training data becomes a good predictor of the test data, 

and the test data becomes a good predictor of future data [81]. 

4.2.4 Machine learning approach for data analyses 
 

 The objective of this work is to investigate the effect of different factors on the PSC device 

stability, and then propose an optimized structure to achieve high long-term stability. Therefore, 

our approach is based on three phases: the first phase consists of extracting the relevant features 

related to the device stability and then create the ML model. Then, we investigated the effect of 

the different factors on the device stability by analyzing the decision trees built by the model and 

the importance score related to these factors. Finally, we proposed different configurations of PSC 

cells for both regular and inverted structures, then predicted their stability and compared it with 

the top experimental cells in terms of stability that are available in our dataset. Figure 4.3 illustrates 

the different steps of ML model building. 
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Figure 4.3- Different steps of creating the ET model 

4.3 Results and Discussion 
 

4.3.1 Analyze the Feature Selection results 
 

 The Extra Tree algorithm was used to apply the importance score method to exclude the 

factors that have a low effect on the device stability and select the most consistent features. 

However, all the features considered to be kept or removed from the dataset based on a threshold 

of the Gain metric method. The features were ranked based on their score, and the score where the 

next feature has a big drop in score value was considered as the threshold. However, the results of 

this method may change slightly due to the stochastic nature of this algorithm. After several 

processes, we were able to eliminate the irrelevant features. 20 features were removed and only 10 

features were kept. The importance score of the remained features was also computed as shown in 

Figure 4.4. 

However, to comprehend the feature selection results, we should first identify the different 

factors that impact the device's stability. In particular, the factors that determine the stability can 

be classified into two categories: the intrinsic and the extrinsic factors. Generally, the intrinsic 

stability degradation occurs during the stress of different operational conditions that lead to 

changes in the perovskite active materials proprieties. While the extrinsic stability degradation is 

related to environmental conditions such as humidity and temperature [82]. Based on the literature, 

the intrinsic stability highly depends on the ETL and HTL materials, the perovskite active layer 

(absorbent layer), and the back contact materials [70, 83]. Moreover, Aldibaja et al. found that the 

use of different lead precursors significantly affects the stability of the devices, and the utilization 

of the PbCl2 as a precursor solution improves the device stability [84]. While Roghabadi et al. refer 
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to the structural phase as an intrinsic factor as well as moisture, thermal, and light exposure as 

external factors that can urge the stability degradation of the PSC [85]. Moreover, the quick 

degradation of stability was found to be caused by heat and light [86, 87]. For instance, at 600C, 

the MAPbX3 perovskite decomposes to gaseous methylamine, lead halide, and hydrogen halid 

[88]. 

Interestingly, the results of the feature selections show that the temperature, light condition, 

and oxygen have an inconsiderable effect on the device stability in this dataset, which seems a 

contradiction with the previous studies. However, these results may be justified due to the specific 

criteria during the data collection. The temperature feature in the dataset contains only the values 

close to ambient temperature. i.e 24 °C < T < 30 °C, which considered as almost constant. This 

means that it has a minimal estimated improvement in the splitting process of the node, hence, a 

very low gain score. Furthermore, from the previous chapter, the temperature causes a significant 

degradation of the stability when its value exceeds the ambient temperature. The oxygen-rich and 

light intensity show a low influence on the stability due to their low values in this dataset. 

 

Figure 4.4- Influence of different factors on the perovskite solar cell stability 
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 However, the relative humidity shows a significant importance score. Similar to the 

previous chapter, the relative humidity values were divided into three categories: 0-30%RH, 30-

55%RH, and above 55% RH. This division is based on the results of the previous chapter and 

several previous studies. For instance, the cell stored under a relative humidity of less than 30% 

shows the same stability degradation for a fixed temperature at ambient conditions [59]. 

Furthermore, J.Noh et all found that the cells stored between 30% RH and 55% RH showed similar 

degradation pattern. And the cells stored under low humidity do not show any significant 

degradation [89]. Significant changes in the stability degradation were observed after exposure to 

60% RH or above [59]. K.Ogunniran and N.Marins prove that the MAPbI3 stability starts to 

degrade when exposed to 55% RH or above, otherwise it shows good stability [90]. However, 

Frost et all show that the decomposition of the MAPbI3 caused by the humidity occurs in a 

reversible reaction as follows [91]: 

[(CH3NH3) + PbI3] n + H2O ↔ [(CH3NH3)n-1+(PbI3) n]+[H3O] + CH3NH2    React. 1 

[(CH3NH3)n-1+(PbI3)n]+[H3O] ↔ HI + PbI2 + [(CH3NH3)PbI3]n-1 + H2O React. 2 

4.3.2 Extra Trees analyzes 
 

 The device's PCE and long-term stability are greatly influenced by the intrinsic factors. As 

we have seen in the previous chapter, using hydrophobic materials as back contact or ETL layer 

enhances the PSC stability. Moreover, using materials based on FA as an active layer provides 

more thermal stability due to the relatively large FA cation compared to the evaporative MA cation 

[92]. 

 The importance score of the intrinsic factors within a specific feature was extracted. Each 

score of the materials under the same feature was compared. Hence, the most important materials 

for the device's stability were revealed. Besides, we have analyzed the decision trees built by this 
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model to extract the stability classification of these factors. The objective of the combination of 

these two processes is to uncover the most important factors in each layer that may enhance the 

stability and give a recommendation for the best materials. An example of one DT is depicted in 

Figure 4.6. 

 The hyperparameters of the ET are as follow: the number of the trees is 310, the split 

criterion is the Ginin index, and the maximum depth of the tree is 3. Figure 4.6 shows an individual 

decision tree, the "sample" parameter indicate the number of samples that are used to split the 

node, as we have seen before, the ET algorithm uses all the training sample to split the first node. 

However, because the majority of the values of the device stability in our dataset are very low 

(sometimes less than one day), we turned this into a classification problem, the different classes 

used are indicated in the "class" parameter inside the leaf in figure 4.6. The "value" parameter 

denotes the distribution of the concerned samples for each class. For example, figure 4.6 shows 

that the samples with TiO2 as ETL probably can lead to a high stability class. 

Figure 4.7, 4.8, and 4.9 represents the different results information extracted from the ET 

algorithm, where the x-axes represent the different classes and the y-axes represents the 

importance score of the variable indicated by color. The bubble size represents the number of 

samples estimated in each class indicated in the x-axis. However, the figures don't show all the 

factors but only the promising variables. Moreover, figure 4.7 and 4.8 shows the influence of input 

variables for the regular structure PSC, and each graph represents a different feature. 

Figure 4.7-a shows different materials used as an active layer, the materials that are found 

to be more stable are: MAPbI3 with a 52% of importance score, 2D/3D structure combination with 

a 25% score, and Multi-cation perovskite with a 17% of score. Moreover, the inorganic CsPbBr 

shows relatively good stability. Several experimental results are consistent with these results. 
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TiO2==True
Sample=360

Gini=0.5

0-30% == True
Samples=710

Gini=0.75

Gini=0.0
Samples=350

Value=[260,70,20,0,0]
Class=[30,60,90,120,150]

Gini=0.0
Samples=112

Value=[89,23,0,0,0]
Class=[30,60,90,120,150]

Gini=0.0
Samples=248

Value=[159,42,21,18,4,0,4]
Class=[30,60,90,120,150,22

0,360]

Yes

Yes

No

No

Figure 4.6- Illustration of a decision tree built by ET algorithm 

 For example, Gordello et al. prove that MAPbI3 with a two-step deposition method 

enhances the stability of the device due to the improvement of their morphology associated with 

the increment of the grain size and with low density of structural defects [60]. Furthermore, a 

detailed study shows that the dissolution of the MAPbI3 when exposed to water in darkness forms 

a molecular hydrate compound which improves the stability of the perovskite [90]. 
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Figure 4.7-. Change of variable importance with the time classification probability 

for regular cells (n-i-p): (a)Perovskite active layer, (b) ETL, (c) ETL-2, (d) HTL 

. The multi-cation perovskite is considered a relatively very stable perovskite. For instance, 

a multi-cation perovskite of Csx MA1-x Pb(5-AVA)xI3-x, which was developed by incorporating the 

Cs(5-AVA) acetate with MAPbI3 shows significant intrinsic stability, interestingly, it shows 

adequate stability when exposed to 100 oC of temperature for 500 hours and still maintain 88% of 

its initial PCE [93, 94]. The tolerance factor obtained from a multi-cation perovskite formed by 

mixing Cs and FA is between 0.9 and 1, which indicates that the perovskite crystal structure is 
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very stable [59]. Moreover, different studies show that multi-cation perovskites with FAMA or 

CsFA have favorable stability at ambient conditions [95, 96].  

 Furthermore, from Figure 4.7-a, the 2D/3D structure of the perovskite has the highest ratio 

in high stability time, a 12 sample from 20 was classified with more than 90 days of stability. 

Fairly, the high stability of the multidimensional 2D/3D structure owing to the integrated 2D 

structure which is considered as a highly stable structure against environmental conditions [97]. 

Moreover, C.MA et all formed a 2D/3D perovskite with CA2PbI4/MAPbIxClx and shows a high 

device stability at a high humidity level of 63% ± 5% without encapsulation, compared to the 

individual 3D structure of MAPbI3xClx, the obtained structure shows a significant improvement 

of stability against humidity [98]. Grancini et all developed a 2D/3D perovskite with (HOOC 

(CH2)4NH3)2PbI4/CH3NH3PbI3 and achieved a one-year of stability [99]. By adding a capping 

layer of 2D halide perovskite of PEA2PbSnI on the top of 3D (FASnI3)0.6 (MAPbI3)0.4 perovskite 

thin film, Yuan et all obtained a high humidity stable PSC device [100]. However, due to the 

presence of the hydrophobic organic cation and the extremely dense packing structure in the 2D 

perovskite, the grain boundary is very reduced, causing less contact with moisture and oxygen, 

which improves the extrinsic stability in the 2D/3D perovskite [101]. 
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Figure 4.8- Change of variable importance with the time classification probability for regular 

cells (n-i-p): (e) HTL additive (f) Deposition method, (g) precursor solution, (h) Anti-solvent 

solution, (i) Back contact, (j) Storage relative humidity. 
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 From Figure 4.7-b, the most effective material on regular cell stability is TiO2 followed by 

SnO2. Compared to all alternatives the TiO2 has the highest appearance in the stable class. 

Furthermore, TiO2 is the most used material as a photoanode in the PSC devices [102]. Although, 

it is considered as a typical photocatalyst, which leads to the oxidation of the organic cation of the 

perovskite [103]. However, during the exposure of TiO2 to the light source, it starts to extract 

electrons from the perovskite materials that contain iodide as halide causing a deconstruction of 

the device structure under the following equation [104]: 

2I- ↔ I2 + 2e- [at the interface between TiO2 and CH3NH3PbI3]  reaction.1 

3CH3NH3 + ↔ 3CH3NH2 ↑ + 3H+  reaction. 2 

I- + I2 + 3H+ + 2e- ↔ 3HI ↑  reaction.3 

The formed HI will evaporate immediately due to its low boiling point. In Figure 4.7-b, the TiO2 

doped with Cl shows a slight stability improvement. However, different studies show that the TiO2 

doped with Cl, Al, or Nb improves the intrinsic stability of the PSC device in static environmental 

conditions [105, 106].  M. Shahbazi and H.Wang state that a PSC device with TiO2-ZrO2 as a 

photoanode gave 1000 hours of high stability under light source of AM 1.5 and ambient 

temperature [72]. The devices with SnO2 as a photoanode were found to be more stable than the 

devices with TiO2 [107]. Moreover, K. Junu et all compared two PSC devices formed with MAPbI3 

with SnO2 and TiO2 as ETL for each, the results show that the device based on SnO2 exceeded the 

TiO2 device instability and in the election generation [108]. 

 Figure 4.7-c shows that the TiO2 mesoporous has a high effect on stability when used as 

the ETL second layer. In general, the mesoporous structure is considered more stable than the 

planar structure due to the small contact area with moisture [72]. A.Mei et all tested the stability 

of a multi-cation PSC with ZrO2 as ETL and mesoporous TiO2 under a simulated sunlight source 
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(AM 1.5), and the device showed excellent stability for more than 1000 hours [109]. From Figure 

4.7-c, we can see that not using an additive layer of ETL also has a high impact on the device 

stability, but only 8 of 168 subset sample was classified in good stable class. This means that using 

m-TiO2 is the best choice to enhance the device's stability. 

 Figure 4.7-d shows that the spiro-MeOTAD, PTAA, and asy-PBTBDT are the most 

promising materials for use as HTL. However, spiro-MeOTAD and PTAA are the most common 

materials used for this purpose [59]. However, the arylamine spiro-MeOTAD is considered highly-

priced and may restrict the device's stability [109]. In our model classification, it has the highest 

impact on the stability and the lowest ratio of samples in the stable class, which means that it highly 

degrades the device's stability. Despite that, it has a great effect on the device efficiency, FK. 

Aldibaja et all formed a PSC device using a scaffold MAPbI3 with TiO2/m-TiO2 as ETL and ETL-

2, and spiro-MeOTAD with 300-400 nm of thickness as HTL, and Au as back contact, the results 

show that using spiro-MeOTAD as HTL leads to the degradation of the perovskite active layer 

stability [84]. By using a different configuration of PSC devices, M.Spalla et all found that the 

cells containing PTAA as HTL give a high performance but its stability significantly degraded 

under humidity due to defection of the PTAA material when reacting with HI during the annealing 

process [110]. 

 Figure 4.8-e shows that Li-TSFI + TBP +Co(II) is the most effective and stable alternative 

for HTL additive, the Li-TSFI and PEDOT:PSS may cause the degradation of the PSV layer due 

to their ability to absorb the moisture [59, 109]. However, doping Li-TFSI + TBP on spiro-

MeOTAD or P3HT can enhance the device conductivity and the stability of the device [111]. 

 The deposition method affects the PSC stability due to its impact on the crystallinity of the 

perovskite [59]. Figure 4.8-f shows that the spin coating and spin 2/3 are the appropriate deposition 
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methods for stability enhancement. Figure 4.8-g shows that the precursor solution has a high 

impact on the device stability. Furthermore, the morphology and the size of the perovskite crystal 

are very dependent on the precursor solution [72]. The results of the ET model show that DMF 

and DMF + DMSO are the optimizing solutions, with some DMF samples classified as very high 

stability. However, the residues of the DMF after its evaporation process can degrade the 

perovskite material [102]. However, it was discovered that using DMF + DMSO as a deposition 

precursor improves the device's stability [59]. From Figure 4.8-h, using chlorobenzene or diethyl 

ether as deposition quenching media can affect the stability positively. 

 Similar to the results of the previous chapter, figure 4.8-i shows that the optimum back 

contact materials for stability are: Carbon, Ag, and Au. And from Figure 4.8-j, the recommended 

RH is between 0% and 30%. 

 From Figure 4.9-a, the most adequate materials for high stability are MAPbI3 and MAPbI3-

xClx, although, MAPbI3-xClx has the highest ration in the stable classes. Moreover, V. Trifiletti et 

all formed by MAPbI3-xClx an inverted structure PSC with PCBM as ETL and NiO as HTL, the 

device shows a good performance both in efficiency and stability [112]. Interestingly, the ML 

results show that both NiO and PCBM as ETL and HTL respectively appear in the highest stable 

classes (figure 4.9-b and c). In fact, because PCBM has a low conductivity, it is recommended to 

be deposited in a thin film [108]. For an inverted structure of PEDOT: PSS/MAPbI3/PCBM 

configuration, Jeon et al found that the optimum thickness of PCBM is 55 nm [96]. However, from 

Figure 4.9-b, C60 has the highest ratio in the stable class. Interestingly, doping PCBM with C60 

protects the device from extrinsic factors by reinforcing the surface morphology of the ETL layer, 

which gives much better stability than using PCBM only [113]. From Figure 4.9-c, PEDOT:PSS 

has a high impact on stability with a good appearance in the stable class, whereas NiO has the 
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Figure 4.9- Change of variable importance with the time distribution for inverted cells (p-i-n): (a) 

Perovskite active layer, (b) ETL and ETL-2, (c) HTL and HTL additive, (d) Back contact,(e) 

Deposition method and precursor. 
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highest ratio in the stable classes. However, PEDOT:PSS is considered a hygroscopic which highly 

absorbs the water, resulting in a significant degradation of the device stability [72, 112]. 

 Figure 4.9-d shows that the best back contact for the inverted structure is Al, where the 

optimum deposition method and precursor are spin and DMF + DMSO respectively, these results 

consistent with many researches [59, 112]. 

4.3.3 Materials and methods obtained by ET to enhance the device stability 
 

 In this section, we will propose an optimized structure configuration for both regular and 

inverted PSC based on the ET analyses, both configurations are illustrated in Figure 4.10- a and b. 

then, we will predict their stability and compare it with the top cell in our dataset in terms of 

stability in Table 3.2. However, the tree-based ensemble algorithm does not give predictions out 

of the target ranges used in the training process. Although, the predicted structures give a stability 

higher than 98% in the regular PSC case, and a stability higher than 93% in the inverted cells 

dataset. 

 However, the mesoporous structure was found to be more stable than the planar structure. 

Therefore, the proposed ETL contains TiO2 and m-TiO2 as the ETL second layer. The stable 

perovskite materials were found to have a 2D/3D multidimensional or multi-cation structure, 

MAPbI3 is considered a good candidate for a regular n-i-p structure as well. However, the 2D/3D 

structure has the highest ratio in the stable classes. For the deposition method, spin and spin 2-3 

are preferable for both regular and inverted structures, and DMF + DMSO and DMF as precursor 

solutions for regular and inverted cells respectively. Chlorobenzene was found to be a good 

deposition anti-solvent for both regular and inverted structures. As an HTL, despite that spiro-

MeOTAD and PTAA have a high enhancement of PCE, their stability is poor. Therefore, the P3HT 
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is considered a good candidate for highly stable cells. Moreover, the preferred back contact is the 

carbon due to its hydrophobic nature which protects the inter-layer from the humidity. 

 MAPbI3xClx is the recommended perovskite material for the inverted structure. While 

PCBM doped with BCP or C60 was found to improve the device stability. NiOx was found to be 

much better in terms of stability compared to PEDOT:PSS. The Al is the preferable back contact 

for the inverted cells. Finally, we illustrate the different results of previous similar studies in Table 

3.3. 

Table 3.2- Prediction of the optimized PSC structure compared to top experimental devices. 

Cell configuration Depositi

on 

method 

Anti-solvent 

traitement 
Precursor 

solution 
Structu

re 
Stabili

ty 

time 

class 

Referen

ce 

TiO2/m-TiO2/(2D-

3D)/P3HT/Carbon 

Spin Chlorobenzene DMF + 

DMSO 

Regula

r 

60+ This 

work 

TiO2/m-TiO2/(2D-3D)/Spiro-

OMeTad/Au 

Spin 2-3 Chlorobenzene DMF + 

DMSO 

Regula

r 

90+ [114] 

TiO2/m-TiO2/MAPbI3/Spiro-

OMeTad/Au 

Spin 2-3 Chlorobenzene+aceto

nitrile 

DMF+DM

SO 

Regula

r 

60+ [115] 

NiO/MAPbI3xClx/PCBM/BCP/

Al 

Spin 2-3 Chlorobenzene DMF Inverte

d 

50+ This 

work 

NiO/DEA/MAPbI3xClx/PCBM/

PN4N/Al 

Spin No DMF Inverte

d 

90+ [116] 

CuOx/MAPbI3/PCBM/Ag Spin Chlorobenzene DMF Inverte

d 

40+ [117] 
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Figure 4.10- Recommended structure of: (a) perovskite regular cell, (b) 

perovskite inverted cell. 

 

Table 3.3. Summarizing the results of intriguing similar works. 

Layer/Method 
Material 

ML Technique Ref 
regular inverted 

Perovskite 

(2D/3D) MAPbI3-xClx Extra Trees this 

Mixed Cation 
Mixed Cation (also 

MAPbI3-xClx) 
Apriori algorithm, decision trees [59] 

NH2NH3InSI  Gradient boosting regression (GBR) [118] 

MAPbI3 with PTEAI-capped 

((PTEA)2(MA)3Pb4I13) 
Mixed cation 

Random forest regressor, association 

rule, Decision trees 
[76] 

Mixed cation 
Mixed cation (also FA-

based perovskites) 
Decision trees [119] 

ETL / ETL 2 

TiO2 / m-TiO2 PCBM / BCP Extratrees This 

SnO2 / PCBM (also doped-

mTiO2) 
PCBM + C60 / BCP Apriori algorithm, decision trees [59] 

SnO2 (also doped-TiO2)/ 

PCBM (also doped-mTiO2) 
PCBM + C60 / BCP Decision trees [119] 

TiO2-dopped/m-TiO2(or 

PCBM) 
 

Random forest regressor, association 

rule, Decision trees 
[76] 

HTL / HTL additive 

P3HT 

/LiTFSI+TBP+Co(II)|FK209 
NiO/DEA Extra trees This 

HTL-fre /F4TCNQ PTAA/ - Apriori algorithm, decision trees [59] 

Spiro-Ometad/ 

LTSFI+TBP(or 

LTSFI+TBP+CO(II)TSFI 

 
Random forest regressor, association 

rule, Decision trees 
[76] 

Inorganic HTLS / F4TCNQ 

(also LiTFSI+ TBP + FK209) 
PTAA (alsoNiOx)  [119] 

Back Contact carbon Al Extras trees This 
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carbon Cu (also Al) Apriori algorithm, decision trees [56] 

Carbon (also Ag) Cu, Al Decision trees [119] 

 

4.4 Conclusion 
 

 In this chapter, we have used machine learning algorithms of the Extra Tree classifier and 

importance score to investigate the impact of each PSC layer and deposition methods on the 

device's stability. We also analyzed the effect of the environmental conditions where the devices 

are operated or stored for both regular (n-i-p) and inverted (p-i-n) structures. Thereupon, the 

obtained results are compared with the state-of-the-art of previous experimental studies. However, 

we found that the environmental conditions are highly effective on the device stability principally 

the moisture. We found that the best materials to protect the device from moisture are those that 

have hydrophobic properties. Furthermore, the cells under high high-temperature environment 

were excluded. Interestingly, we found that the results of this work are compatible with many 

experimental results, which underpin the adopted approach. Correspondingly, in the next chapter, 

we attempt to optimize the PSC device structure to reach a better PCE. 

 

 

 

 



92 
 

Chapter 5. Perovskite Solar Cell optimization to achieve 

high Power Conversion Efficiency using Machine Learning 

techniques 
 

5.1 Introduction 
 

 The PSC devices show a significant advantage in terms of the viability of efficiency 

increment, which has increased from 3.8% in 2009 to 26% in 2023 [16]. This rapid rise in PCE 

indicates that it has the potential for further improvement. Therefore, the objective of this chapter 

is to optimize the PSC device structure in an attempt to enhance the device PCE. The ML learning 

algorithm used in this study is Random Forest (RF) trained with a large dataset containing 3000 

experimental data samples. The data was collected from several previous works involving the test 

of the efficiency of different PSC devices. Herein, these data contain many missing values that can 

reduce the ML model performance. Therefore, we have used different strategies to preserve the 

maximum of the data point. Furthermore, this chapter provides a guide for preparing a highly 

efficient PSC device by investigating the different factors that are related to PSC device 

manufacturing. Besides, the factors that have a significant impact on the device PCE were 

identified. The main factors investigated in this chapter are the materials and proprieties of the 

device layers (ETL, perovskite active layer, HTL, back contact) that were found to be efficient to 

the device PCE. However, the approach in this chapter is different from the previous stability 

analyses. To achieve high PSC PCE, we have to predict the efficiency of different PSC devices 

with different configurations and proprieties, and then, extract the values that are estimated to 

enhance the PCE. 
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 This chapter is organized as follows: the next sections involve the different approaches 

used in this work. First, we provide the details of the ML technique used in this study, then, we 

present the data collection method and the strategy used to maintain the missing data. The 

preparation and preprocessing of the dataset for the ML application was also revealed. Further, we 

discussed the approaches used for the PSC PCE analysis and optimization. Then we will discuss 

the ML results and offer proposed structures and predict their efficiency. Finally, we conclude the 

results of this chapter and give future aspects. 

5.2 Materials and Methods 
 

5.2.1 Random Forest 
 

 Random forest (RF) is a frequently used ML algorithm developed by Leo Breiman and 

Adele Cutler in 2001 [120]. Similar to ET and XGBoost, Random Forest is considered as an 

ensemble learning method that uses a combining multiple decision tree predictors to improve the 

model performance and solve complex problems [120]. It is a supervised learning technique that 

can be used for both classification and regression tasks. Unlike the ET which builds de-correlated 

decision trees and uses all the data samples to build a tree, the generalization error of the RF 

depends on the correlation and the strength of the trees and uses a random data sample from the 

training data to build the trees. Moreover, the accuracy of the RF model increases (The cost 

function converges to a limit) with increasing the number of decision trees in the forest [120]. The 

RF algorithm comprised a forest of trees composed of random data samples and features bagging 

(i.e. features randomness) from the training data with replacement, this method is called the 

bootstrap sample. For a classification task, the final prediction consists of the majority vote of the 

decision trees in the forest. For the regression task, the final prediction is the average results of the 
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individual decision trees in the forest. Herein, we are not diving deeper into this algorithm since 

we are only interested in the final output of the RF model. However, the reason for using RF 

instead of ET is due to the fact that we found that RF is much faster than ET (may be due to that 

RF uses fewer data samples to build the tree) since there are thousands of materials and proprieties 

prediction in this study, we conclude that RF is much practical then ET in this specific problem.  

5.2.2 Data Collection and dataset construction 
 

 The data was collected based on screening previously published papers involving recording 

the efficiency of the PSC devices, while providing the detail of the materials and the proprieties 

for each layer of the PSC, as well as illustrating the detail of the materials and methods used in the 

manufacturing process of these devices. The collection of all this information aims to determine -

through ML- the materials, proprieties, and methods that have significant effects on the device 

PCE, where in this study we will focus on the effective factors. The information gathered can be 

classified into five categories: 

-protection layer: which contains the subtract materials, and the encapsulation. 

-ETL features: contains the thickness, materials, additive (doping), the deposition method and 

solvent, and the annealing temperature. 

-Perovskite active layer features: contains the layer thickness, Materials short form (ABX), 

composition a ions, compositions b ions, composition x ions, the perovskite band gap, the additive 

materials, annealing temperature, deposition method, and solvent, deposition anti-solvent. 

-HTL features: contains the layer thickness, layer materials, additives, deposition method, and the 

deposition solvent. 



95 
 

-Back contact features: contains the BC thickness, the BC materials, the deposition method, and 

the deposition solvent. 

 The data was gathered from different teams, papers, and reviews [51, 59, 76] while 

respecting several guidelines, for example, the data that contains the PCE test under high 

temperature or intense light were neglected, since these two factors influence the performance of 

the PSC device [121]. Moreover, the data was organized and labeled under the features listed above 

in the form of a matrix (table) to prepare it for further preprocessing stage, Table 4.1 illustrates the 

organized data. Each column represents the variables of a specific feature, for example, the ETL 

thickness, HTL annealing temperature, etc. while the rows represent a data sample. The total data 

samples are 3000 data points and the total features in this dataset is 35, as we have seen in the 

previous chapters, the high dimensionality is bad for the ML model. However, there are some 

samples that have lack in feature values. For instance, from 3000 samples there are 898 data sample 

that doesn't contain the perovskite band gap value. Hence, In order to keep these samples, we have 

adopted two approaches depending on the type of the missing variables. In the categorical feature 

(e.g. the features that contain the formula of the material), the missing values were replaced by a 

specific arbitrary category in each feature. In the numerical features like the band gap, we adopted 

a quite complicated approach which can be summarized as follows: at first, we separated the 

categorical features from the numerical features, then made a correlation matrix between the 

numerical dataset with the PCE target, which computed a pairwise correlation of features and 

excluding missing values based on the Pearson correlation coefficient (PCC) through the following 

equation: 

Given the dataset D = {(x1, y1), …,(xi, yi)} where 𝑖 ∈ {1, … . , 𝑁} 
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𝜌𝑥𝑦 =  
∑ (𝑥𝑖− �̅�)(𝑦𝑖− �̅�)𝑁

𝑖=1

√∑ (𝑥𝑖− �̅�)𝑁
𝑖=1  ∑ (𝑦𝑖− �̅�)𝑁

𝑖=1

        (13) 

N is the number of samples, and �̅�, �̅� are the mean values of the feature and target respectively. 

The results of the correlation matrix are illustrated in Figure 5.1. The features that have a low 

correlation coefficient are deleted and the features that show a relatively important correlation with 

the PCE have emerged with the dataset that contains the categorical features. The numerical 

features dropped are the perovskite thermal annealing temperature, the perovskite layer thickness, 

and the HTL layer thickness. And the features that relatively have a significant effect on the device 

PCE are: the ELT layer thickness, the ETL annealing temperature, the perovskite band gap, and 

the back contact layer thickness. 

Table 4.1.Data of Perovskite Solar cells used for Machine Learning training process. 

Features (35) ETL 

Materials 

ETL Thickness 

(nm) 

... Perovskite Bandgap (eV)  PCE 

(%) Cells 

Cell 1 TiO2 40 ... FAMAPbBrI 

 

1.73 12.1 

Cell 2 SnO2 80 ... MAPbI 

 

1.61 8 

Cell 3 PCBM60+BCP 220 ... MAPbI 

 

1.61 13.06 

......... …….. ….... ... ... ……. …. 

Cell 2998 PCBM-60 120 ... CsAgBiBr 

 

2.39 5.5 

Cell 2999 TiO2 70 ... MAPbI 

 

1.61 17 

Cell 3000 C60+BCP 80 ... CsPbBrI 

 

2.07 9.6 

 

 However, the remained numerical features still contain missing values. To solve this 

problem we have predicted the missing values using RF Regressor through the following strategy: 

first transform one of the features that contains missing values to a target and the rest of the features  
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Figure 5.1. Correlation matrix of numerical features 

and the PCE are considered as input for the ML model. Then, delete all the rows that contain 

missing values of this target. However, the numerical features still contain missing values. Hence, 

we have solved this problem by calculating the mean value of the feature column and replacing 

the missing values with it (as we have seen in section 3.3.2 this method can help to handle the 

numerical missing values). The resultant dataset was divided into 80% of the data to train the ML 

model and the rest for evaluating this model. If the accuracy of the resulting model is acceptable 

then we predicted the missing values of that target using the input from the samples that we have 

already deleted. Finally, we restored the missing value of the features that we had replaced with 

the mean value and repeated this process with every feature that contained missing values until all 
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the missing values were replaced with predicted values. Overall, we have built five different RF 

models. These model's evaluation and the number of predicted values are summarized in Table 

4.2. 

5.2.3 Data Preprocessing 
 

 The preprocessing is a crucial step in preparing the dataset and making it appropriate for 

the ML model. Initially, we explored every data sample manually to ascertain the correctness of 

the data for both typing and organization. Then, we have encoded the categorical variables into 

numerical values. We have used GrisSearchCV for tuning the hyperparameters of the RF 

Regressor model, the results obtained are: the number of the trees in the forest is 200, the split 

criterion is "absolute error", and the maximum depth of the tree is 50. In particular, this dataset 

contains 32 different features that impact the ML model negatively due to the dimensionality curse 

(see Chapter 2).  

Table 4.2- Illustration of the number of the predicted values and the accuracy of the model used. 

Features N° experimental 

values 

N° predicted  

values 

Accuracy of ML 

predictions 

Bandgap 2102 898 87.9% 

ETL thickness 1268 1738 96% 

ETL annealing temperature 232 2768 98.5% 

BMC thickness 2472 528 98% 

 

Therefore, we have used the feature importance algorithm from the RF Regressor model to 

determine the relevant features to the PCE and delete the irrelevant ones. From 32 features, 17 

feature was deleted and only 15 feature have relatively a significant importance score. The 

importance score of the relevant features is shown in Figure 5.2. By using the R2 method the 
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accuracy of the RF model resulted in 73.2% before feature selection (the ideal value is 100%). 

After the features selection process the accuracy of the model increased to 86.4%, and 1.3 by using 

mean square error (the optimum value is 0). The whole model building process is summarized in 

Figure 5.3. 

5.2.4 Machine learning approach 
 

 The goal of this study is the attempt to optimize the materials and the proprieties of the 

PSC to increase the device PCE. We have determined the factors that have a significant effect on 

the device PCE through the feature importance technique. This means that improving these factors 

may enhance the PCE. In particular, these factors can be divided into two categories: numerical 

factors (ETL layer thickness, ETL deposition thermal annealing temperature, perovskite band gap, 

back contact thickness), and materials factors (ETL, perovskite, HTL, BC materials, deposition 

solvent, and anti-solvent). We have optimized the values of the numerical factors by generating 

three different PSC configurations as follows: Fe2O3/CsPbBrI2/NiO-mp/Carbon, 

CdS/FAMAPbI3/NiO-C/Au and PCBM-60/Phen-NaDPO/MAPbI3/asy-PBTBDT/Ag (new 

configurations that didn't exist in the training dataset to prevent overfitting). Then, select one 

specific numerical factor continuously vary its value, and predict the device PCE every time the 

value changes. If there is a consistency of the variation of the PCE between the three configurations 

we generalize the optimum values. The results of this process are shown in Figures 5.4, 5.5, 5.6, 

6.7. For optimizing the materials factors, we have followed a similar approach. We have taken the 

three PSC configurations and predicted the PCE for every material in the dataset, then, the 

materials that frequently appear in the three configurations that have the highest PCE are 

considered the more convenient. The results of this process are shown in Table 4.3. 
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Figure 5.2- Importance score of the features that are relevant to the PCE 

 

Figure 5.3- Machine learning model building process workflow 
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5.3 Results and Discussion 
 

5.3.1 Perovskite Material Band Gap 
 

 The band gap determines the light wavelength domain that can be absorbed by the active 

layer to convert it into electrical energy. So, it is a fundamental property of the photovoltaic 

semiconductors. A large band gap causes an increment of the Open Circuit Voltage Voc which 

reduces the fill factor FF, hence reducing the device PCE. Otherwise, a low band gap decreases 

the amount of the photon absorption. Therefore, in order to balance the compromise between Jsc 

and VOC, the optimum band gap must be found. 

 

Figure 5.4- Variation of the PSC PCE in function of the perovskite material band gap. 

 Figure 5.4 shows the variation of the PSC PCE predicted using the RF Regressor algorithm. 

The band gap for the three configurations changes from 1.10 eV to 3.0 eV, with an increase of 
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0.01 eV for each prediction. The results show that the common optimum band gap values shared 

by the three configurations are between 1.55 eV and 1.60 eV. Furthermore, many experimental 

results show an evenly matched band gap range. For instance, A. Mahmud et all recorded 22.77% 

of PCE with a PSC device containing CsFAMAPbBrI as an active layer with a 1.6 eV band gap 

[122]. While J. Yoo et all reach 22.6% of PCE with a 1.56 eV band gap of FAMAPbBrI | 

(C6H13NH3)PbI perovskite material [123]. Interestingly, figure 5.2 shows that the band gap owes 

15.8% of the importance score, which represents the second highest score among all the different 

features (35 features) indicating how important the band gap is for optimizing the device PCE. 

5.3.2 ETL layer thickness 
 

 The charge transmission and the hole blocking provided by the Electron transport layer 

(ETL) plays a decisive role in the operation of the PSC devices. Moreover, from Figure 5.2. The 

total importance score of the factors related to the ETL layer is 39.4%, which makes it the second 

important layer after the perovskite active layer with a 46.5% total importance score. These two 

layers manage 85.9% of the device PCE according to the ML model. Which is considered a very 

interesting result. However, the ETL thickness is by far the most important factor for the PCE 

owing 23% of the importance score. 

Figure 5.5 shows the effect of the variation of the ETL thickness on the device PCE for 

three different PSC structures. The variation of the ETL thickness value is from 20nm to 120000nm 

by adding 10nm for each prediction. The results show that the highest PCE increment occurs when 

the ETL thickness is between 140nm and 170nm. In particular, S. Sakib et all studied the ETL 

thickness effect on the PCE by simulating a PSC device using three different ETL materials (SnO2, 

TiO2, ZnO), they found that increasing the ETL thickness up to 200nm reduced the device PCE, 
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and the optimum material found is SnO2 [124]. Furthermore. Increasing ETL by more than 200nm 

causes a limitation in electron transit and raises the recombination rate. It also reduces the value 

of Voc which in turn reduces the FF and the PCE. 

 

Figure 5.5- Variation of the PSC PCE in function of ETL material thickness. 

5.3.3 ETL thermal annealing temperature 
 

 The thermal annealing temperature is an important factor in the material deposition phase 

during the device manufacturing process. In particular, the annealing temperature affects the 

electrical and optical properties of the materials deposited. It also can change the morphology of 

the films and influence the crystalline structure of the materials [125]. For instance. Y.  Li et all 

show the influence of different annealing temperatures on the ETL layer consisting of ZnO film 

processed with the sol-gel technique. They found that the low annealing temperature results a 

smoother surface of the ZnO compared to the high annealing temperature. However, the low 
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temperature results the highest PCE of 3.66%. Then, the PCE performance decreases with 

increasing annealing temperature, then intriguingly afterward starts to improve [126]. Similarly, 

the results in Figure 5.6 show an evenly matched PCE variation with an increased annealing 

temperature. In our study, The ETL annealing temperature range was taken between 25 oC and 

550 oC with increments of 5 oC for each prediction. The results show that there is no coherence 

between the variations of PCE of the three PSC configurations. Hence, these results cannot be 

generalized, from which we conclude that each material has its own optimum thermal annealing 

temperature. This finding seems understandable since every material has its characteristic 

tolerance. Moreover, figure 5.2 shows that the thermal annealing temperature has a relatively 

significant impact on the device PCE with an importance score of 9.3%. Which indicates how 

important to select an adequate temperature. 

 

Figure 5.6- PCE variation as a function of ETL thermal annealing temperature 
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5.3.4 Back Contact thickness 

 

Figure 5.7- Variation of the PSC PCE in function of BMC thickness. 

 

 The Back contact electrode is an important layer for the PSC devices which prevents the 

absorption of the parasitic light brought by the transparent conductive electrodes and provides a 

potent feasibility to enhance the device PCE. Figure 5.2 shows that the back contact thickness has 

a 6.6% of importance score. Interestingly, this score is bigger than the back contact material score, 

it is apparent that the layer thickness of both back contact and ETL is more important than the 

materials used in this layer according to our ML model. Note that the layers of materials also have 

a significant importance. Figure 5.7 shows the variation of the device PCE with different back 

contact thicknesses. The thickness value varies from 1nm to 25000nm, with an increment of 50nm 

for each prediction. The results show that for every PSC structure, the value of the PCE strongly 

declines after 150nm of back contact thickness. Moreover, the optimum thickness was found to be 

less than 50nm. By using a computational method, A. Kang et all formed a PSC device with 

https://www.sciencedirect.com/science/article/pii/S0038092X20301328#f0045
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graphene back contact and found that the device PCE decreases when the back contact thickness 

increases from 7nm to 30nm and then remains constant after 30nm [127]. This is due to a rise in 

the lateral resistance of the back contact resulting from the increment of the number of graphene 

which reduces the fill factor. 

5.3.5 Materials optimization 
 

 Figure 5.2 shows that the materials of the different PSC layers owing 18.2% of the 

importance score. In particular, the metal cation B composition of the perovskite (ABX3) materials 

shows a significant relation with the device PCE with 7.6% of importance score. The most 

frequently used material as perovskite B composition is lead (Pb), and it has been used for almost 

all competent PSC [128]. However, due to the toxic nature and environmental harm of Pb, many 

researchers shifted to using lead-free or divalent mixed cation perovskite to reduce the Pb effect. 

For example, replacing the Pb with Tin (Sn) [129, 130]. Moreover, many research papers and 

reviews state that the B site has a significant impact on the device's stability and performance [128, 

131]. 

 Table 4.3 illustrates the materials from different layers that frequently appear in top-

efficiency devices predicted by the RF Regressor model. The Total Materials column represents 

the number of different materials and compositions predicted for each layer. For example, in the 

ETL Layer, we investigate 262 different materials and material compositions (e.g. TiO2 + PCBM). 

Furthermore, the SnO2, PCBM, BCP, C60, and TiO2 are respectively the most frequent materials 

in the top devices ETL layer. Hence, the optimum ETL material could be one of these materials or 

a composition between them, also it could be a mix with other different low-appearance materials. 

J. Kim et all prove that SnO2 ETL has an excellent electron extraction and exceeds the widely used 
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TiO2, which enhance rapidly the PCE, also it shows a higher stability over TiO2 [132]. Dkhili et 

all found that the double layer ZnO and SnO2 gives a higher PCE compared to SnO2 only [133]. 

 The optimum perovskite materials according to our ML model are CsFAMAPbBrI, 

MAPbI, and FAMAPbBrI respectively. Where the highest PCE was predicted owing to PSC with 

FAMAPbBrI as a perovskite active layer. L. Wang et all obtain a PCE of 22.7% by preparing a triple-cation 

mixed PSC with CsFAMAPbBrI as an active layer and a poly(triaryl amine) (PTAA) filled with 

spiro- OMeTAD, the ETL material used is SnO2, and the back contact material is Au, the device 

also shows good stability which preserve 90% of its initial PCE for a 1000h under 85 oC 

temperature [134]. Where W. Wu et all reach 22.6% of PCE with a device composed of a modified 

MAPbI3 as a perovskite active layer with a configuration of ITO/PTAA/MAPbI3/C60|BCP/Cu 

[135]. 

The HTL optimum materials are spiro-OMeTAD with 20% of the samples in the highest 

PCE devices, then NiO and PTAA with 10%. However, spiro-OMeTAD remains by far the most 

frequently material used as HTL, and it is the first solid-state hole transport material used in PSCs. 

Which gives an efficient hole extraction and transmits to the back contact [136]. However, spiro-

OMeTAD has a significant sensitivity to ion diffusion which causes stability degradation, and it 

also reduces the device PCE under thermal stress [137]. Moreover, Doping spiro-OMeTAD was 

found to enhance the device's stability and performance. For instance, found that doping spiro-

OMeTad with trityltetra(pentafluoropheny)borate (TPP) improves the device stability and 

conductivity [138]. 

The optimum back contact material found is Au with a 30% appearance in the composition 

of the top device back contact followed by Ag with 26%. In particular. F. Behrouznejad et all 

compared a study with different back contact materials in a PSC configuration of FTO/m-
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TiO2/MAPbI3/spiro-OMeTAD/Back contact, the material used are Au, Ag, Pt, Ni, Cu, Cr where 

performing a PCE of 16.4%, 16.5%, 14.7%, 7.8%, 9.2%, 0.04% respectively. Moreover, the PCE 

of Ag reduced quickly due to its instability which leave Au as the most adequate material as back 

contact [70]. Finally, the optimum deposition solvent and anti-solvent are DMF + DMSO + (other) 

and Chlorobenzene respectively. 

Table 4.3- Different layer/deposition Materials that appear frequently in top PCE cells by using ML 

techniques 

Layers/deposition materials Materials Percentage Total materials 

ETL SnO2 33 % 262 

PCBM-60 27 % 

BCP 25 % 

C60 23 % 

TiO2 23 % 

Perovskite CsFAMAPbBrI 22 % 120 

MAPbI 15 % 

FAMAPbBrI 11 % 

HTL Spiro-MeOTAD 20 % 385 

NiOx 10 % 

PTAA 10 % 

Back Contact Au 30 % 65 

Ag 26 % 

Cu 26 % 

MoO3 21 % 

Ti 17 % 

Deposition Materials DMF + DMSO (+other) 60 % 67 

DMSO + GBL  

Deposition quenching media Chlorobenzee 58 % 30 

Ether 30 % 

Toluene 29 % 

Materials: the material component of this layer in high-efficiency PSCs. 
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Percentage: the number of current materials in top efficiency cells divided by the total materials in top cells. 

Total materials: the number of different materials compositions predicted by machine learning. 

5.4 Conclusion 
 

 In this chapter, we have followed a different approach aiming to optimize the PCE of the 

PSC device by using the ML technique of Random Forest Regressor and importance score. The 

RF algorithm was trained and evaluated by using 3000 samples of PSC experimental data from 

previous works. The relevant factors to the device PCE were investigated using the RF Importance 

score, where the materials were optimized by predicting the PCE of every material that exists in 

our dataset. The optimum ETL, back contact layer thickness was covered by predicting the PCE 

of three different PSC configurations with a wide range of values. As well as the optimum 

perovskite band gap.  
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General Conclusion 
 

Summary 

 

We have presented in this thesis a global investigation and analysis of all aspects of data 

related to the perovskite solar cells through the employment of advanced Machine learning 

techniques. The main methodological contribution of this research is the systematic investigation 

of the relevant factors that assist in achieving two main objectives: (i) enhancing the PSC device 

stability. (ii) Increasing the PSC device power conversion efficiency. The main difference between 

this approach and the previous approach is: the adoption in this research is entirely on the 

experimental data rather than using computational data. Even though the process of gathering 

experimental data is time-consuming and very hard, we thought that using experimental data is the 

most convenient approach for offering a better guide for future experimental research. The second 

advantage is that we have taken all the factors related to the PSC manufacturing and storage 

conditions. First, we provided an introduction to the application of different techniques including 

ML for material design and motivation about the latest achievement of the PSC devices. In Chapter 

1, we have described machine learning while giving the working method of the algorithms used in 

this research, as well as we have defined some common technical terms used in this field. In 

Chapter 2, a comparison between three ML techniques concluded that the most appropriate 

algorithms for the material data are those that can separate non-linear data. For example, the neural 

networks, and the ensemble learning based on decision trees. In Chapters 3 and 4, the main factors 

that influence the PSC device stability degradation were analyzed in detail, where we found that 

the environmental conditions -especially the relative humidity- are key factors in the degradation 

of the PSC device. Moreover, we found that the hydrophobic materials are an adequate choice for 
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mitigating this problem. In Chapter 5, the analysis of the prediction of PSC PCE results of ML 

involving a large scale of different materials and proprieties has helped us to determine the 

optimum factors for increasing the device PCE. 

Future Outlook 

There are significant opportunities for further research on using machine learning 

techniques for another type of material data. In the future, we intend to investigate the 

Optoelectronic devices upon the availability of the data. 
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Abstract 
 

 With the rapid development of the so-called cloud storage. The practice of storing and 

sharing scientific experimental data on different internet platforms grew tremendously, which led 

to a significant accumulation of data. Until recently, this large quantity of data has been neglected 

due to the lack of effective techniques to gather knowledge and useful information from these data. 

Nevertheless, the progress achieved in the data-driven techniques in the past decade offered unique 

opportunities to extract important information from the material data. In this thesis, we have used 

advanced techniques of machine learning to solve critical problems that prevent successful 

commercialization of the perovskite solar cells technology through the investigation and the 

analysis of an important amount of data consisting of the measurements and materials information 

related to the manufacturing and the operation of these devices. This research provides a practical 

and useful guide for improving the performance of this kind of solar cell as well as enhancing the 

operational lifetime. Moreover, we have compared the results of machine learning with different 

previous experimental research, where we found remarkable coincidences. Which opens up 

important prospects in this field. 
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 ملخص

 

مع التطور السريع لما يسمى بالتخزين السحابي. اصبح تخزين البيانات المستخلصة من التجارب العلمية ومشاركتها             

هذه الكمية الكبيرة على منصات الإنترنت المختلفة شائعا جدا، مما أدى إلى تراكم كبير للبيانات. وحتى وقت قريب، تم إهمال 

من البيانات بسبب عدم وجود تقنيات فعالة لجمع الخصائص والمعلومات المفيدة من هذه البيانات. ومع ذلك، فإن التقدم المحرز 

في التقنيات المعتمدة على البيانات في العقد الماضي أتاح فرصًا فريدة لاستخلاص معلومات مهمة من البيانات المتعلقة بفيزياء 

اد. في هذه الأطروحة، استخدمنا تقنيات متقدمة من الذكاء الاصطناعي وبالتحديد للتعلم الآلي لحل العراقيل التي تمنع المو

التسويق التجاري الناجح لتكنولوجيا الخلايا الشمسية من نوع البيروفسكايت من خلال استقراء وتحليل كمية مهمة من البيانات 

وعمل هذه الأجهزة. ويقدم هذا البحث دليلاً عملياً ومفيداً لتحسين أداء هذا النوع من  التي تحتوي على معلومات عن تصنيع

الخلايا الشمسية بالإضافة إلى تعزيز العمر التشغيلي لها. علاوة على ذلك، قمنا بمقارنة نتائج التعلم الآلي مع مختلف الأبحاث 

ح آفاقا مهمة في هذا المجال.التجريبية السابقة، حيث وجدنا توافق ملحوظ بينهم. مما يفت  

Résume: 

 

Avec le rapide développement de ce qu’on appelle le « cloud stockage ». La pratique consistant à 

stocker et à partager des données scientifiques expérimentales sur des différentes plateformes d’internet 

est considérablement développée, ce qui a conduit à une accumulation importante de données 

scientifiques. Jusqu'à récemment, cette grande quantité de données a été négligée en raison du manque 

des techniques efficaces pour recueillir des informations à partir de ces données. Néanmoins, les progrès 

réalisés dans les "data-driven" techniques au cours de la dernière décennie ont offert des opportunités 

uniques pour extraire des informations importantes à partir des données des matériaux. Dans cette thèse, 

nous avons utilisé des techniques avancées de Machine Learning pour résoudre des problèmes critiques 

qui empêchent la commercialisation de la technologie des cellules solaires à pérovskite grâce à 

l'investigation et à l'analyse d'une quantité importante de données constituées avec des informations sur 

les matériaux liées à la fabrication de ces appareils. Cette recherche fournit un guide pratique et utile pour 

améliorer les performances de ce type de cellule solaire ainsi que sa durée de vie opérationnelle. De plus, 

nous avons comparé les résultats de Machine Learning avec plusieurs précédentes recherches 

expérimentales, dans lesquelles nous avons trouvé des coïncidences remarquables. Ce qui ouvre des 

perspectives importantes dans ce domaine. 

 


